Ph.D. BOTANY COURSE WORK

(With effect from the Academic Year 2017-18)

Department of Biology The Gandhigram Rural Institute Deemed University (MHRD, Govt. of India) Accredited by NAAC with ' A' Grade (3rd Cycle) Gandhigram- 624 302 Dindigul District, Tamil Nadu

Ph.D. BOTANY **SCHEME**

FIRST SEMESTER							
	Course code	Course Title	С	L	Ε	ESE	Total
Core	17BOTR0101	General Botany	4	4	3	100	100
Courses	17BOTR0102	Advances in Botany	4	4	3	100	100
	17BOTR0103	Plant Systematics	4	4	3	100	100
Supportive	17BOTR0104	Research Methodology	4	4	3	100	100
Courses							
		Total Credits	16				

SECOND SEMESTER							
	Course code	Course Title	С	L	Ε	ESE	Total
Supportive	17BOTR0205	Quantitative Techniques –	4	4	3	100	100
Courses		Advanced Biostatistics					
Core	17BOTR0SX	Area of Specialization on thrust areas	4	4	3	100	100
Courses							
Seminar		Seminar-1	1	2		-	-
		Seminar-2	1	2		-	-
		Seminar-3	1	2		-	-
		Term paper on Topical Research	1	2		-	-
		Total Credits	12	-	-	-	-

RESEARCH CREDITS				
Course code	Course title	С		
	a) Project Planning including literature collection,	4		
	finalization of objectives and methodology			
	b) Field/ Lab Studies, Data Collection, compilation	32		
of results, statistical analysis, results and final				
	conclusion			
	c) Synopsis and thesis submission, final viva	6		
	Total Credits	42		
OVERALL CREDITS 70				

	Area of Specialization on thrust areas*
17BOTR0S-1	1. Phytochemistry and Pharmacology
17BOTR0S-2	2.Fungal Biotechnology
17BOTR0S-3	3. Plant Reproductive Biology
17BOTR0S-4	4.Plant Taxonomy and Ethnobotany

C- Credits
L-Lecture Hours
E- Exam Hours
ESE- End semester Exam
marks

*Detailed Syllabus for the area of Specialization may be prepared by the respective doctoral committee

GENERAL BOTANY

Credit 4

Objectives:

To enable the students

- To have comprehensive knowledge on diversity of plants.
- To understand the physiology and mechanisms of plants
- To understand the various aspects of plant development and reproduction
- To understand the economic importance of plants
- •

Learning outcomes:

The course will provide a comprehensive knowledge on diversity, physiological mechanism, development and reproductive aspects of plants on satisfying the requirements of this course, students will have knowledge and skills on

- Identification of diversity of different life forms
- The physiological, developmental and reproductive aspects of plants
- Identification of different economical important plant species.

UNIT I :

Diversity of different plant forms: Algae, Fungi, Bryophytes, Pteridophytes and Gymnosperms: Classification, General characteristics different classes, Phylogeny and Economic Importance of algae, Fungi, bryophytes, Pteridophytes and Gymnosperms.

UNIT II:

Plant Physiology: Photosynthesis – Photophosphorylation, Electron transport, Electrochemical gradient and energy transduction, photoprotective mechanisms; CO_2 fixation- C_3 , C_4 , CAM pathways and modern concepts. Respiration & photorespiration – TCA cycle, plant mitochondrial ET & ATP synthesis; alternate oxidase and Modern concepts. Plant growth regulators – Physiological effects and mechanisms of action of plant growth hormones.

UNIT III:

Cytology: Architecture of prokaryotic and eukaryotic cells and tissues. Biomembranes and the subcellular organization of eukaryotic cells. Detailed structure, morphology and functions of mitochondria, chloroplasts, endoplasmic reticulum, golgi complex, ribosomes. Nucleus, Ultra structure of nuclear membrane, chemical composition, function. Chromosomes and nucleolus.

UNIT IV:

Embryology: Microsporogenesis: male gametophyte pollen fertility and sterility, storage germination. Megasporogenesis: embryo sac – types and development. Pollination, fertilization, incompatibility, breeding systems(geiteno and xenogamy), embryo and seed development, seed viability and germination, polyembryony and parthenocarpy.

UNIT V:

Economic Botany: Economic importance of cereals and millets, legume and nuts, vegetables and fruits, spices and condiments, gums and resins, fibre wood, tannin, dye, oil, sugar and starch, beverage yielding plants and medicinal plants.

References:

- Davis, PH. and Y.H. Heywood. 1965. Principles of Angiosperm Taxonomy. Oliver & Boyd.
- 2. Grant, W.F. 1984. Plant Biosystematics. Acad. Press. New York
- 3. Judd, W.S. et al. 2002. Plant systematics– A Phylogenetic approach 2nd. Edn. Sinauer associates Inc. Publishers. Sunderland, Massachusetts, USA.
- 4. Kumar, A and Purohit S.S. 2007. Plant Physiology Fundamentals and Applications. Agrobios India.
- 5. Melvile, T.C. 2008. Applied Economic Botany. Read Books Publishers Publishing Co. Pvt. Ltd. New Delhi.
- 6. Sambamurty A.V.S.S. and Subramanyam N.S. 2000. Economic Botany of Crop Plants. Asiatech Publishers Inc. India.
- 7. Simpson, M.G. 2006. Plant systematics. Elsevier Academic Press, U.S.A
- 8. Singh, G. 2004. Plant systematics Theory and Practice. Oxford and IBH
- 9. Sivarajan, V.V. 1991 Introduction to the Principles of Taxonomy, Oxford and IBH Pub. Co., New Delhi.
- 10. Verma V. 2007. Text book of plant physiology Ane Books, Kolkata India.

Journals and Web-resources:

- 1. <u>http://www.publish.csiro.au/bt</u>
- 2. <u>http://www.amjbot.org/</u>
- 3. <u>http://www.nrcresearchpress.com/loi/cjb1</u>
- 4. <u>https://www.cliffsnotes.com/study-guides/biology/microbiology/the-unicellular-algae/general-characteristics-of-algae</u>
- 5. http://www.ivyroses.com/Biology/Fungi/fungi-characteristics.php
- 6. cms.gcg11.ac.in/attachments/article/115/Gen%20Chr,classificatn_Bryo.pdf

Unit	Lecture Number	Торіс	Lecture delivery Mechanism
Ι	1	Diversity of different plant forms: Algae, Fungi,	Lecture+ PPT
		Bryophytes, Pteridophytes and Gymnosperms	
	2	Classification, General characteristics different classes,	Lecture
		Phylogeny	
	3	Economic Importance of algae, Fungi, bryophytes,	Lecture
		Pteridophytes and Gymnosperms.	
II	4	Plant Physiology: Photosynthesis –	Lecture+ Video
		Photophosphorylation, Electron transport,	
		Electrochemical gradient and energy transduction,	
		photoprotective mechanisms;	
	5	CO_2 fixation- C_3 , C_4 , CAM pathways and modern	Lecture+ Video
		concepts.	
	6	Respiration & photorespiration – TCA cycle, plant	Lecture+ Video
		mitochondrial ET & ATP synthesis; alternate oxidase	
		and Modern concepts.	I DDT
	7	Plant growth regulators – Physiological effects and	Lecture+ PPT+
	0	mechanisms of action of plant growth hormones,	Video
111	9	Cytology: Architecture of prokaryotic and eukaryotic	Lecture+ PPT
		cells and tissues. Biomembranes and the subcellular	
	10	Organization of eukaryotic cells.	Lasterna (NC) da a
	10	mitachandria chloroplasta and plasmic rationlym color	Lecture + video
		amplay ribosomes	
	11	Complex, mossimes.	Lactura L DDT
	11	composition function Chromosomes and nucleolus	Lecture+ FF I
IV	12	Embryology: Microsporogenesis: male gametophyte	Lecture⊥ PPT
1,	14	pollen fertility and sterility storage germination	Lecture + 1111
	13	Megasporogenesis: embryo sac – types and	Lecture+ PPT
		development. Pollination, fertilization, incompatibility.	
		breeding systems(geiteno and xenogamy), embryo and	
		seed development, seed viability and germination,	
		polyembryony and parthenocarpy.	
V	14	Economic Botany: History, varieties and economic	Self study
		importance of cereals and millets, legumes, nuts,	
		vegetables and fruits.	
	15	History, varieties and economic importance of spices,	Self study
		condiments, gums, resins, fibre, wood.	
	16	History, varieties and economic importance of tannin,	Self study
		dye, oil, sugar, starch, beverages and medicinal plants.	

LECTURE SCHEDULE: GENERAL BOTANY

ADVANCES IN BOTANY

Credit 4

Objectives:

To enable the students

- To have comprehensive knowledge on trangenics in plants.
- To understand the mechanism of secondary metabolites production
- To understand the various aspects of gene transfer methods
- To understand the mechanism of genetic recombination

Learning outcomes:

The course will provide a comprehensive knowledge on advance aspects botanical research. On satisfying the requirements of this course, students will have knowledge and skills on

- Trangenics in plants, secondary metabolites production from plant cells
- gene transfer methods
- Industrial botany and genetic recombination in plant cells

UNIT I:

Transgenesis in plants: Somaclones; plant cell - bacterium hybrids; biociders; biological control; pathogen resistance; herbicide resistance; stress resistance; homozygous cultivars; enrichment of storage proteins; improvement of photosynthesis; post harvest preservation; selection of auxotrophs & secondary metabolite production.

UNIT II:

Tissue Culture: Biotechnological applications of plant cell, tissue and organ culture, Media types, preparation; callus formation, organogenesis. Somatic embryogenesis, somaclonal variation, embryo culture, artificial seeds .Production of secondary metabolites from plant cell cultures - Processes for enhancing the production of secondary metabolites- Technology of plant cell culture for production of chemicals.

UNIT III:

Direct gene transfer methods- chemical methods, electroporation, microinjection, particle bombardment. Application of Plant biotechnology for the production of quality oil, Industrial enzymes, paper, biodegradable plastics, antigens (edible vaccine) and antibodies

UNIT IV:

Molecular mechanism of genetic recombination in prokaryotes & eukaryotes: models of recombination, recombination activating genes & hotspots, Holliday & double Holliday junction, cruciform DNA, recombination by replication, site-specific recombination, gene conversion, heteroduplexes & recombinational probes; V(D)J/somatic, Cre-Lox & FLP-FRT recombination

UNIT V:

Genetic Engineering, SCP; Protein engineering, fusion proteins & designer enzymes, Production of biopharmaceuticals, commodity & industrial chemicals, food & beverages; Metabolite engineering & nif-engineering; Anti-sense technology; Biosafety & biohazards, physical & biological containment; Genetic screening & privacy; Ethical, economic& legal issues.

References:

- 1. Torr, J. D. 2006. Genetic Engineering-Current Controversies. Greenhaven Press.
- 2. Magnien, E. & De Nettancourt, D. 1985. Genetic Engineering of Plants and Micro-Organisms Important for Agriculture. Springer Verlag.
- Gerald Karp 2013. Cell and Molecular Biology: Concepts and Experiments. 7th Edition, Wiley, NJ, USA.
- 4. Geoffrey M. Cooper & Robert E. Hausman 2013. The Cell: A Molecular Approach,6th Edition, Sinauer Associates, Inc., Sunderland, USA.
- 5. Harvey Lodish, Arnold Berk, Chris A. Kaiser & Monty Krieger 2012 Molecular Cell Biology. 7th Edition, W. H. Freeman, NY, USA.
- 6. Stephen R. Bolsover, Elizabeth A. Shephard, Hugh A. White & Jeremy S. Hyams 2011. Cell Biology: A Short Course Wiley-Blackwell, NJ, USA.
- 7. Doods, J. H. and Roberts, L. W. 1985. Experiments in Plant Tissue culture, Cambridge University Press.
- 8. George, E. F. 1993-96. Plant propagation by Tissue culture-2 vols. Exegetics Ltd.

Journals and Web-resources:

- 1. https://link.springer.com/journal/11240
- 2. <u>https://www.journals.elsevier.com/journal-of-molecular-biology/</u>
- 3. http://www.springer.com/life+sciences/journal/11008
- 4. <u>http://www.sciencedirect.com/science/journal/00222836?sdc=1</u>
- 5. http://www.scirp.org/journal/ajmb/
- 6. <u>https://www.nature.com/nsmb/</u>
- 7. <u>https://www.gmb.org.br/</u>

Unit I	Lecture Number	Торіс	Lecture delivery Mechanism
	1	Transgenesis in plants: Somaclones; plant cell - bacterium hybrids; biociders; biological control	Lecture
	2	Pathogen resistance; herbicide resistance; stress resistance	Lecture
	3	Homozygous cultivars; enrichment of storage proteins; improvement of photosynthesis; post harvest preservation	Lecture+ PPT
	4	Selection of auxotrophs & secondary metabolite production.	Lecture+ PPT
II	5	Tissue Culture: Biotechnological applications of plant cell, tissue and organ culture, Media types, preparation; callus formation, organogenesis.	Lecture
	6	Somatic embryogenesis, somaclonal variation, embryo culture, artificial seeds Production of secondary metabolites from plant cell cultures -	Lecture
	7	Processes for enhancing the production of secondary metabolites. Technology of plant cell culture for production of chemicals-	Lecture + Video
III	8	Direct gene transfer methods- chemical methods, electroporation, microinjection, particle bombardment.	Lecture+ Video
	9	Application of Plant biotechnology for the production of quality oil- Industrial enzymes paper	Lecture
	10	Biodegradable plastics-antigens (edible vaccine) and plantibodies	Lecture
IV	11	Molecular mechanism of genetic recombination in prokaryotes & eukaryotes:	Lecture+ PPT
	12	Models of recombination, recombination activating genes & hotspots	Lecture+PPT
	13	Holliday & double Holliday junction, cruciform DNA, recombination by replication, site-specific recombination.	Lecture+PPT
	14	Gene conversion, heteroduplexes & recombinational probes	Lecture+PPT
	15	V(D)J/somatic, Cre-Lox & FLP-FRT recombination	
V	16	Genetic Engineering – Merits & Demerits: SCP; Protein engineering, fusion proteins & designer enzymes	Lecture+PPT
	17	Production of biopharmaceuticals, commodity & industrial chemicals, food & beverages	Lecture+PPT
	18	Metabolite engineering & nif-engineering	Lecture+PPT
	19	Anti-sense technology;. Genetic screening & privacy; Ethical, economic& legal issues	Lecture+PPT
	20	Biosafety & biohazards, physical & biological containment	Lecture

LECTURE SCHEDULE: ADVANCES IN BOTANY

PLANT SYSTEMATICS

Credit 4

Objectives:

To enable the students

- To have comprehensive knowledge on history and evolution of plant systematics.
- To understand the classical and modern aspect of plant classification.
- To understand the various aspects of International Code of Nomenclature (ICN).
- To understand the evolutionary tendencies of different orders.

Learning outcomes:

The course will provide a comprehensive knowledge on history and evolution of plant systematic, various classification system and ICN. On satisfying the requirements of this course, students will have knowledge and skills on

- Basic and applied aspects of plant systematic
- Various classification systems proposed.
- Various aspects of International Code of Nomenclature (ICN).
- Evolutionary tendencies of different plant groups.

UNIT I:

History of developments in taxonomy: Linnaean to post-Linnaean era; Systematics - concepts and components; Evolutionary ecology-concepts and principles; Microevolution - theory and concepts; Species and speciation; Phylogenetic systematics; Macroevolution - inferring phylogenies. Evolutionary tendencies noticed in Ranales, Rosales, Centrospermae, Tubiflorae, Amentiferae, Helobiales, Liliflorae, Glumiflorae.

UNIT II:

Systems of angiosperm classification: Phenetic versus phylogenetic system; Cladistics in taxonomy; relative merits and demerits of major systems of classification Takhtajan, Cronquist, Thorne. Systems of Angiosperm Classification: Phenetic versus phylogenetic systems. Cladestics in taxonomy, Angiosperm phylogeny group (APG). Herbarium techniques and significance.

UNIT III:

Diversity and classification of flowering plants; Biological diversity-concepts and applications; Diversity- patterns, indices and applications. The species concept: Taxonomic hierarchy, species, genus, family and other categories; Principles used in assessing relationship delimitation of taxa and attribution of rank, BSI and its role.

Unit IV:

International code of Nomenclature (ICN);History of Botanical Nomenclature principles of ICBN; Types method; Author citation; Retention and rejection of names; Publication of names, Phylogeny of Angiosperms: Origin and evolution of angiosperms; Important phylogenetic concepts; Taxonomic evidences obtained from Anatomy, Embryology and Palynology, Chemotaxonomy and Molecular taxonomy.

Unit V:

Salient features, vegetative and sexual characters of Fabaceae, Sapindaceae, Menispermaceae, Rutaceae, Euphorbiaceae, Myrtaceae, Lamiaceae, Rubiaceae, Orchidaceae, Cyperaceae and Poaceae.

References:

- 1. Simpson, M.G. 2006. Plant Systematics. Academic Press, London
- 2. Sivarajan, V. V. 1996. Principles of plant taxonomy. Oxford and IBH publishing Co. Pvt. Ltd, New Delhi.
- 3. Sharma, O.P. 2013. Plant Taxonomy. McGraw Hill Education Pvt. Ltd. New Delhi.
- 4. Mondal, A.K. 2005. Advanced Plant Taxonomy. New Central Book Agency (P) Ltd., New Delhi.
- 5. Johri, R.M. 2005. Taxonomy. Vols. I-IV, Sonali Publication, New Delhi.
- 6. Bhattacharyya, B. 2005. Systematic Botany. Narosa Publishing House, New Delhi.
- 7. Subramanyam, N.S.1999. Modern Plant Taxonomy. Vikas Publishing House, New Delhi.
- 8. Singh, V., Pandey, P.C. and Jain, D.K.1997. A text book of Botany: Angiosperms. Rastogi Publications, Meerat.
- 9. Singh, V. and Jain, D. K. 1997. Taxonomy of Angiosperms. Rastogi publications. Shivaji Road, Meerat.

Journals and Web-resources:

- 1. <u>http://www.springer.com/life+sciences/plant+sciences/journal/12225</u>
- 2. <u>https://biotaxa.org/phytotaxa</u>
- 3. <u>http://www.worldcat.org/title/bulletin-of-the-botanical-survey-of-india/oclc/1752752</u>
- 4. http://www.iaat.org.in/journal.html
- 5. http://www.nordicjbotany.org/
- 6. <u>https://www.banglajol.info/index.php/BJPT</u>
- 7. <u>http://www.tandfonline.com/toc/tweb20/current/</u>
- 8. <u>https://www.jstor.org/journal/taxon</u>

Unit	Lecture	Торіс	Lecture
	Number		delivery Machanism
			Wiechamsm
Ι	1	History of developments in taxonomy: Linnaean to post-	Lecture
		Linnaean era;	
	2	Systematics - concepts and components. Evolutionary	Lecture
		ecology-concepts and principles;	
	3	Microevolution - theory and concepts Species and speciation;	Lecture+PPT
	4	Phylogenetic systematics; Macroevolution - inferring	Lecture+PPT
	5	Evolutionary tendencies noticed in Ranales, Rosales,	Lecture+PPT
	_	Centrospermae, Tubiflorae, Amentiferae, Helobiales,	
		Liliflorae, Glumiflorae.	
II	6	Systems of angiosperm classification: Phenetic versus	Lecture
		phylogenetic system	
	7	Cladistics in taxonomy; relative merits and demerits of	Lecture+PPT
		major systems of classification Takhtajan, Cronquist,	
	8	Systems of Angiosperm Classification: Phenetic versus	Lecture
	0	phylogenetic systems. Cladestics in taxonomy. Angiosperm	Lecture
		phylogenetic systemic endesties in taxonomy, ringrosperin phylogeny group (APG), Herbarium techniques and	
		significance.	
III	9	Diversity and classification of flowering plants; Biological	Lecture
		diversity-concepts and applications. Diversity- patterns,	
		indices and applications.	
	10	The species concept: Taxonomic hierarchy, species, genus,	Lecture
	11	family and other categories.	Lecture
	11	and attribution of rank BSI and its role	Lecture
VI	12	International code of Botanical Nomenclature: History of	Lecture+PPT
••	12	Botanical Nomenclature principles of ICBN.	Looture III I
	13	Types method; Author citation; Retention and rejection of	Lecture+PPT
		names; Publication of names.	
	14	Phylogeny of Angiosperms: Origin and evolution of	Lecture
		angiosperms; Important phylogenetic concepts.	
	15	Taxonomic evidences obtained from Anatomy, Embryology	Lecture+PPT
• • •	16	and Palynology, Chemotaxonomy and Molecular taxonomy.	
v	10	Salient features, vegetative and sexual characters of	Lecture+PP1
	17	Salient features, vegetative and sexual characters of	Lecture+ PPT
	±/	Rutaceae, Euphorbiaceae and Myrtaceae.	Lecture 11 1
	18	Salient features, vegetative and sexual characters of	Lecture+ PPT
		Lamiaceae, Rubiaceae and Orchidaceae	
	19	Salient features, vegetative and sexual characters of	Lecture+ PPT
		Cyperaceae and Poaceae.	

LECTURE SCHEDULE: PLANT SYSTEMATICS

Objectives:

To enable the students:

- To understand the working principles, construction and applications of the instruments used in the studies related to various disciplines of biological sciences.
- To expose the students on the basic understanding of research concepts and learn the art of thesis & paper writing, publication and scientific ethics.

Learning outcomes:

- The students are be able to understand the working principle, operation system and importance of pH meter and various Microscopes.
- The students are be able to understand the working principle, operation system and importance of centrifuge, photometers and chromatography.
- The students are be able to understand the working principle, operation system and importance of molecular techniques.
- The students are be able to understand the overall concepts of Research and art of writing Thesis
- The students are be able to understand art of writing research articles, publication and scientific ethics.

Unit I : pH meter, microscopic and polarimetric techniques:

pH meter - types, basic principle, operation and application; Buffers-principle, standards and preparation of buffer; pH determination & pH indicators. Microscopy – Principle, operation and application - simple, compound, light-field, dark-field, phase–contrast, fluorescence, confocal and electron microscopy. Micrometry-principle and application. Polarimetry -principle and application. Experiments on buffer preparation and pH determination. Exposure to various microscopes.

Unit II : Centrifuge, Photometric and Chromatographic techniques:

Centrifugation-types, principle and application. Photometry - Principle, operation and application-colorimeter, spectrophotometer, flame photometer, bomb calorimeter, UV-Visible spectroscopy, atomic absorption spectroscopy, mass spectroscopy and FTIR spectroscopy. Chromatography– types, principle and application: paper chromatography, thin layer chromatography, column chromatography, Ion Exchange, GC-MS and HPLC. Demonstration on differential and gradient centrifugation Demonstration on verification of Beer-Lamberts law. Demonstration on chromatographic separation of amino acids and sugars. Experiment on ARA.

Unit III: Molecular techniques:

Electrophoresis - Principle and applications, paper electrophoresis, agarose gel-Polyacrylamide gel electrophoresis (PAGE and SDS- PAGE) and immuno electrophoresis. Molecular techniques- Microarray, MALDI-TOF, Amino acid sequencing-DNA sequencing (Enzymatic & Chemical methods) Blotting techniques-southern, northern and western blottings and PCR techniques. RAPD, RFLP and ARDRA techniques. Demonstration/experiments on isolation, separation of DNA and Protein molecules by electrophoresis techniques.

Unit IV : Research and Thesis writings:

Research –definition, objectives, types and importance – Research methods in biological Sciences –Research process – Literature survey – sources – scientific databases – Research report writing – Parts of thesis and Dissertation – Title, certificate, declaration, acknowledgements, contents, list of tables, figures, plates & abbreviations, Introduction, Review of literature, Materials and methods – Results – Presentation of data - Tables, figures, maps, graphs, photographs – Discussion – Summary, bibliography / References and Appendix.

Unit V : Research Publication and Project writing:

Writing scientific paper: Importance of title – abstract – key words, Introduction, Materials and Methods, Results, Discussion, Acknowledgements and References – Publication on research journals – Standards of research journals – peer review – impact factor –citation index. Proof correction – proof correction marks –Method of correction proof. Writing chapters in books. – Preparation of Research proposal and funding agencies – Research fellowships. Ethics in science reporting – Reproduction of published materials – Plagiarism & Anti – Plagiarism check – citation and acknowledgement. Biosafety levels – IBC – Institutional ethical committees – IPR & IPP.

References:

- 1. David.T Plummer (2009). An Introduction to Practical Biochemistry, Tata Mc Graw Hill Pub.Co.Ltd, New Delhi.
- 2. N.Gurumani (2006).Research Methodology for Biological Sciences. MJP Publishers, Chennai.
- 3. K.Kannan (2003). Hand book of Laboratory Culture media, reagents, stains and buffers. Panima Publishing Corporation, New Delhi
- 4. Glick, B.R and Pasternak.J.J.,(2003). Molecular Biotechnology, ASM Press, Washington.DC.
- 5. P.Asokan (2002). Analytical biochemistry-Biochemical techniques. First Edn. China Publications, Melvishoram, Vellore.
- 6. Rajbir Singh (2002). Chromatography 1st Edition Mittal Publications, New Delhi.
- 7. Keith Wilson and John Walker (2002). Practical Biochemistry-Principles and techniques. 5thEd.Cambridge Univ.Press, London.
- 8. James.D.Watson, Michael Gilman, JanWit Koeski and Mark Zuller(2001). Recombinant DNA. IInd Ed.Scientific American Book. New York.
- 9. Rodney Boyes(2001). Modern Equipmental Biochemistry. III Ed Addison Wesley Longman Pvt.Ltd., Indian Branch ,Delhi.
- 10. S.Palanichamy and M.Shanmugavelu.(1997). Research methods in biological sciences. Palani Paramount Publications, Palani.

Web resources:

PubMed search engine for database of references and abstracts on life sciences and biomedical topics: <u>https://en.wikipedia.org/wiki/PubMed</u>.

Plagiarism Software: Online plagiarism checker for checking articles: <u>https://www.plagiarismsoftware.net/</u> and www.urkund.com/en/

LECTURE SCHDULE: RESEARCH METHODOLOGY

Unit	Lecture	Topics	Lecture delivery
	No.		Mechanism
	1	pH meter - types, basic principle, operation and	Lecture +PPT
		application	
	2	Buffers-principle, standards and preparation of buffer; pH	Lecture +PPT
		determination & pH indicators.	
Т	3	Principle, Operation and application of simple, compound light-field microscopes	Lecture +PPT
-	4	Principle Operation and application of dark-field phase-	Lecture
	•	contrast, fluorescence microscopes	Exposure visit
	5	Principle. Operation and application of confocal and	Lecture
	_	electron microscopy.	Exposure visit
	6	Micrometry-principle and application.	Lecture +PPT
	7	Polarimetry -principle and application	Lecture +PPT
	8	Experiments on buffer preparation and pH determination.	Practical Demo
		Exposure to various microscopes.	
	9	Centrifugation-types, principle and application	Lecture +PPT
	10	Principle, Operation and application of colorimeter,	Lecture +PPT
		spectrophotometer, flame photometer, bomb calorimeter,	
11 Principle, O		Principle, Operation and application of UV-Visible	Lecture
11		spectroscopy, atomic absorption spectroscopy, mass	Exposure visit
	10	spectroscopy and FTIR spectroscopy.	
	12	chromatography thin layer chromatography column	Lecture +PP1
		chromatography, thin fayer chromatography, column chromatography & Ion Exchange	
	13	Principle, Operation and application of GC-MS and	Lecture
		HPLC.	Exposure visit
	14	Demonstration on differential and gradient centrifugation	Practical Demo
	15	Demonstration on verification of Beer-Lamberts law.	Practical Demo
	16	Demonstration on chromatographic separation of amino	Practical Demo
		acids and sugars & Experiment on ARA.	
	17	Electrophoresis- Principle and applications	Lecture
	18	Paper and agarose gel electrophoresis,	Lecture
	10		Exposure visit
Ш	19	Polyacrylamide gel electrophoresis (PAGE and SDS-	Lecture
***		PAGE) and immuno electrophoresis.	Exposure visit

	20	Microarray, MALDI-TOF and Amino acid sequencing	Lecture
			Exposure visit
	21	DNA sequencing (Enzymatic & Chemical methods)	Lecture
			Exposure visit
	22	Blotting techniques-southern, northern and western	Lecture
		blottings and their applications	Exposure visit
	23	PCR, RAPD, RFLP and ARDRA techniques and their	Lecture
		applications	Exposure visit
	24	Demonstration/experiments on isolation, separation of	Practical Demo
		DNA and Protein molecules by electrophoresis	
		techniques.	
	25	Research- Definition, objectives, types and importance	Lecture +PPT
	26	Research methods in Biological Sciences- Research	Lecture +PPT
IV		process	
	27	Literature survey- sources- scientific databases	Lecture + Library
			visit
	28	Research report writing – Parts of thesis and Dissertation	
		- Title, certificate, declaration, acknowledgements, and	Invited Lecture
		contents – list of tables, figures, plates & abbreviations.	
	29	Parts of thesis: Introduction, Review of literature,	Invited Lecture
		Materials and methods	
		Parts of thesis: Results – Presentation of data - Tables,	Invited Lecture
		figures, maps, graphs, photographs - Discussion -	
		Summary, bibliography / References and Appendix	
	30	Writing scientific paper – Importance of title – abstract –	Invited Lecture
		key words, Introduction, Materials and Methods, Results,	
		Discussion, Acknowledgements and References	
	31	Publication on research journals – Standards of research	Invited Lecture
		journals – peer review – impact factor –citation index	
• 7	32	Writing chapters in books	Invited Lecture
v	33	Proof correction – proof correction marks –Method of	Invited Lecture
		correction proof	
	34	Preparation of Research proposal and funding agencies –	Invited Lecture
	51	Research fellowships	
	35	Ethics in science reporting – Reproduction of published	Invited Lecture
		materials – Plagiarism & Anti –Plagiarism check –	
		citation and acknowledgement.	
	36	Biosafty levels – IBC – Institutional ethical committees –	Class Room
	_	IPR & IPP.	Discussion

17BOTR0205 QUANTITATIVE TECHNIQUES- ADVANCED BIOSTATISTICS Credits- 4

Objective:

To provide students with a basic understanding of the principles of statistical methods and techniques as applied to biological Sciences.

Learning Outcomes:

Upon completion of the course, the students will be able to perform the following:

- Choose appropriate statistical measures to analyze biological data.
- Students may try a few "Bio- Statistics tutorial" available in the internet.
- Select an appropriate measure, test and make interpretation of the results in biological experiments.
- Create and interpret visual representation of quantitative data in biological research.
- Understand different rates, ratios and Odds ratio required to interpret biological data.

UNIT-I:

Descriptive Statistics: Types of data; Measures of central value; Variability Measures, Skewness measures; Computational Tools: SPSS, MATLAB, DMRT; Origin Software; NCBI online Tools on sequence alignment and physiological tree analysis

UNIT-II:

Sampling and sample Designs: Census VS Sample methods- Laws of sampling; Sampling Techniques, Determination of Sample size; Merits and Demerits of Sampling and Non- Sampling errors; Reliability of samples.

UNIT-III:

Probability and Theoretical distributions: Basic concepts in probability, Definition of Probability, Approaches to probability; Theoretical Distributions- Simple problems in Binomial, Poisson and Normal Distributions with biological applications.

UNIT-IV:

Correlation Techniques: Simple Correlation and Regression problems; Multiple Correlation and Regression Analysis; Logistic Regression Analysis, Factor Analysis; Discriminant Analysis; Cluster Analysis; Illustration with SPSS; Bio- assays and odds ratios.

UNIT-V:

Inferential Statistics; Basic concepts; Type- I and Type- II errors; Steps in Hypothesis Testing; Different Test procedures; Analysis of variance and Design of Experiments; Multiple comparisons Least significant difference Test; Analysis of Covariance.

References:

- 1. Vijayalakshmi. G and C. Sivapragasam (2009)Research methods; Tips and Techniques, MJP publishers, Chennai
- 2. Sinha, B.L (2006) Statistics in Psychology and Education. Anmol publications, New Delhi
- 3. Gurumani, N(2004)An Introduction to Biostatistics, MJP publishers, Chennai
- Stevens, J.P (2002) Applied Multivariate Statistics for the Social Sciences, 4th Edition, New Jersey, Lawrence, Erlbaum Associates
- 5. Aneshensel, C.S(2002)Theory- Based Data Analysis for the Social Sciences, Thousand Oaks, CA: Sage publications.
- 6. Sampath Kumar V.S(1997)Bio-Statistics, Manonmaniam Sundaranar University, University publication, Tirunelveli
- 7. Arora, P.N and P.K. Mathan(1996)Bio- Statistics, Himalaya publishing House, NewDelhi
- 8. Kline, P(1994)An Easy Guide to Factor Analysis, London: Routledge
- 9. Gupta, S.P(1992)Statistical methods, Sultan Chand, New Delhi
- 10. Milton J.S(1992)Statistical methods in Biological and Health Sciences, McGraw Hill, Inc., New York

Webliography:

- 1. Data analysis: Online manuals and guides to software packages, SSPS product file: http://www.spss.com/statistics.
- 2. Practical examples for the analysis of Surveys http://www2.napier.ac.UK/depts/fhls/peas/index.htm
- 3. Research methods and Statistics arena http://www.research methodsarena.com/resources/resources.asp
- 4. Analysis of statistics and quantitative data analysis website: www.data-archive.ac.UK
- 5. Resource for methods in evaluation in Social research -<u>http://gsociology</u>.icaap.org/methods/.

Unit	Lecture	Торіс	Delivery Mechanism
Ι	1 to 12	Introduction and Types of data,	Lecture
		Central measures, Variability Measures and	Practical
		Skewness	Practical
		Computational Tools	Lecture + Practical
II	1 to 12	Introduction; Census VS Sample.	Lecture
		Laws of Sampling and Sampling Techniques	Self study
		Determination of Sample size	Lecture
		Merits and Demerits of sampling	Self study
		Sampling and Non- sampling errors	Self study
III	1 to 12	Probability- Basic concepts	Lecture
		Approaches in Probability	Lecture
		Computation of Probability-	Lecture and Practical
		Simple problems in Binomial, Poisson and	Lecture+ Practical
		Normal Distributions	
IV	1 to 14	Correlation and Regression- concepts	Self study
		Simple problems	Lecture+Practical
		Multiple Correlation and Regression	Lecture+Practical
		Analysis	Lecture+Practical
		Logistic Regression	Lecture+Practical
		Factor Analysis	Lecture+Practical
		Discriminant Analysis, Cluster Analysis	Lecture+Practical
		Bio-assays and adds ratios	Lecture+ Practical
V	1 to 14	Basic concepts	Lecture
		Type I and Type II errors	Lecture
		Steps in Hypothesis Testing	Lecture
		Test procedure	Lecture
		Design of Experiments,	Lecture+Practical
		Analysis of Variance	Lecture+Practical
		Multiple comparisons, Least significance	Lecture+Practical
		difference Test; Analysis of Covariance	Lecture+Practical

LECTURE SCHEDULE: QUANTITATIVE TECHNIQUES- ADVANCED BIOSTATISTICS