THE GANDHIGRAM RURAL INSTITUTE (DEEMED TO BE UNIVERSITY) GANDHIGRAM - 624302

(Ministry of Education, Govt. of India)
Accredited by NAAC with 'A' Grade (3rd cycle)

Department of Mathematics

M.Sc. Degree (Mathematics)

Revised Syllabus with effect from 2024 – 2025 onwards

CURRICULUM WITH OUTCOME BASED EDUCATION (OBE)

Name of the School : School of Sciences

Department : Department of Mathematics Academic Programme offered : B.Sc. (Hons.) Mathematics,

B.Sc. B.Ed. (4 year integrated) Mathematics, M.Sc. Mathematics and Ph.D. Mathematics

I. VISION :

> Science & Technology Enabled Rural

Development through teaching and research in

Mathematical Sciences

II. MISSION :

> Proficiency in research and teaching

Research studies in International standards and to urge the need for practical significance

III. PROGRMME CODE : MATP

IV. PROGRAMME : M.Sc. Mathematics

V. PROGRAMME EDUCATIONAL OBJECTIVES (PEO) OF M.Sc. MATHEMATICS:

PEO1: Developing problem solving & computational skills in the advanced areas of Mathematics and its applied subjects.

PEO2: To create new theoretical and Mathematical concepts towards many real life problems

PEO3: Interpreting mathematical results through geometrical concepts.

PEO4: Creating competence to qualify National/international level exams.

PEO5: Ability to think innovatively to do research in high level in Mathematics and interdisciplinary fields.

GRADUATE ATTRIBUTES

GA1: Critical Thinking

GA2: Mathematical Modeling Ability

GA3: Solving Ability

VI. PROGRAMME OUTCOMES (PO)

PO 1: To pursue careers in education, business, industry, government etc., and getting teaching skills in Mathematics and research awareness in pure and applied field of Mathematics.

- PO 2: Have the ability to do interdisciplinary research in science and engineering
- PO 3: To demonstrate technical and soft skills through Mathematical knowledge to commensurate with global needs.
- PO 4: To get employed in higher level institutes in national/international standards
- PO 5: Have the potential to meet out the challenges in modern technology

VII. PROGRAMME SPECIFIC OUTCOMES(PSO)

- PSO1: Explain advanced concepts of algebra, real and complex analysis, measure theory, functional analysis and number theory.
- PSO2: Succeed in solving problems in differential equations, mechanics, optimization theory, statistics and numerical analysis.
- PSO3: Critique soft skills and computing skills for solving complex problems arising in Mathematics and other interdisciplinary fields.
- PSO4: Identify the significance of mathematical and statistical thinking, training, and approach to problem solving, on a diverse variety of disciplines.
- PSO5: Creating mathematical models for real-world problems.

Name of the Programme	M.Sc. Mathemat	ics			
Year of Introduction			2008		
Year of Revision			2024		
Semester-wise Courses and Credit distribution	I	II	III	IV	Total
No. of Courses	6	8	7	6	27
No. of Credits	22	25	23	22	92

			Number	Lecture	Exam		Marks	
Category	Course Code	Course Title	Of	Hours	Duration	C.F.A	E.S.E	Total
			Credits	per week	(Hours)			
	Semester – I							
	24MATP0101	Advanced Algebra	4	4	3	40	60	100
	24MATP0102	Real Analysis	4	4	3	40	60	100
Core Course	24MATP0103	Advanced Ordinary	4	4	3	40	60	100
Core Course	24WIATPU103	Differential Equations	4	4	3	40	60	100
	24MATP0104	Numerical Analysis	4	4	3	40	60	100
	24MATP0105	Discrete Mathematics	4	4	3	40	60	100
Foundation	0.46/200001		0	0		50		
Course	24GTPP0001	Gandhi in Everyday Life	2	2		50		50
	I	TOTAL	22	l		<u> </u>		
	Semester – II							
	24MATP0206	Linear Algebra	4	4	3	40	60	100
	24MATP0207	Advanced Real Analysis	4	4	3	40	60	100
Core Course	24MATP0208	Partial differential	4	4	4 3	40	60	100
Core Course		Equations and Applications		4	3	40	60	100
	24MATP0209	Complex Analysis	4	4	3	40	60	100
	24MATP0210	Mathematical Methods	4	4	3	40	60	100
Electives	24MATP02GX	Generic Elective	3	3	3	40	60	100
Value Added	24MATP2VAX	Value Added Course	2	2		50		50
Course	Z4WIATPZVAX	value Added Course	2	2		50		50
Skill		Communication and Soft						
Development	24ENGP00C1	Skills	2	2		50		50
Course		SKIIIS						
	1	TOTAL	25	l				

	Semester – III							
	24MATP0311	Topology	4	4	3	40	60	100
	24MATP0312	Measure Theory	4	4	3	40	60	100
Core Course	24MATP0313	Probability and Statistics	4	4	3	40	60	100
	24MATP0314	Optimization Techniques	4	4	3	40	60	100
Electives	24MATP03DX	Discipline Centric Elective	3	3	3	40	60	100
Modular Course	24MATP03MX	Modular Course	2	2		50		50
D 4EVAIDON /1		Village Placement	2			50		50
Extension	24EXNP03V1	Programme	2			30		30
TOTAL		23						
	Semester – IV							
	24MATP0415	Stochastic Processes	4	4	3	40	60	100
Core Course	24MATP0416	Functional Analysis	4	4	3	40	60	100
	24MATP0417	Graph Theory	4	4	3	40	60	100
	24MATP0418	Dissertation	6	12		75	75+50	200
Value Added	24GTPP00M1	Human values and	2	2		50		50
Course	24G1FF00W1	Professional Ethics	2	2		30		30
Modular	24MATP04MX	Modular Course	2	2		50		50
Course	ZHIVIA I PUHIVIA	Modular Course				30		30
		TOTAL	22					
	GR	RAND TOTAL	92					

DISCIPLINE CENTRIC ELECTIVES: (24MATP03DX)

Semester-III

- 1. 24MATP03D1 Classical Dynamics
- 2. 24MATP03D2 Control Theory
- 3. 24MATP03D3 Optimal Control
- 4. 24MATP04D4 Fractal Analysis
- **5.** 24MAT P04D5 Coding Theory

VALUE ADDED COURSES: (24MATP02VAX)

- 1. 24MATP02VA1 Numerical Methods for Engineers
- 2. 24MATP02VA2 Mathematics for Competitive Examinations
- 3. 24MATP02VA3 Fuzzy Logic For Management Decision Making

MODULAR COURSES: (24MATP03MX/24MATP04MX)

Semester-III

- 1. 24MATP03M1 Field Theory
- 2. 24MATP03M2 Wavelet Analysis

Semester-IV

- 1. 24MATP04M3 Introduction to SciLab
- 2. 24MATP04M4 Neural Networks

ABSTRACT					
Course type	Total number of Courses				
Core Course	17				
Discipline Centric Elective	01				
Generic Elective	01				
Modular Course	02				
Foundation Course	01				
Extension	01				
Human values and Professional Ethics	01				
Skill Development Course	01				
Dissertation	01				
Value Added Course	01				

Semester	I	Course Code	24MATP0	101		
Course Title	Advanced Algebra		•			
No. of. Credits	4	No. of. contact hours per week		4		
New Course/ Revised Course	Revised Course	Revised Course Revised Course (Minimum 20%) If revised, Percentage of Revision effected (Minimum 20%)				
Category	Core Course					
Scope of the Course	Advanced Skill					
Cognitive Levels addressed by the course	 Understanding automorphism structure of finite abelian gro Applying Sylow's Theorem to find the conjugacy classes in Examining the irreducibility Investigating the structure of fields (K5-Evaluate) 	of theory of groups (K1 Remember of group of a group, class equation tups (K2-Understanding) to study the properties of groups. symmetric groups (K3-Applying of a polynomial (K4-Analyse) two isomorphic algebraic structures of rings, ideals (K6-Create)	n of a group Using class	s equation to		
Course Objective	The Course aims to provide deep l	knowledge about various algebra	ic structure	es.		
Unit		Content		No. of. Hours		
I	A counting principle - Norm Homomorphisms - Cauchy's theo for abelian groups - Corresponding isomorphism theorem	rem for abelian groups - Sylow	s theorem	14		
II	Automorphisms – Inner automor groups - Cayley's theorem – Appli		of cyclic	12		
III	Another counting principle: Conj Applications - Cauchy's theorem groups - Finite abelian groups.		0 -	13		
IV	Ideals and quotient rings – More i Euclidean rings - G.C.D - Uniqu Euclidean ring - Fermat's theorem	ue Factorization Theorem - A		12		
V	Polynomial rings - Division Algor Gauss' Lemma - Eisenstein Criter rings - U.F.D.	•		13		
References	Text Book: 1. I. N. Herstein, Topics in A Unit 1: Chapter 2: Sect. Unit 2: Chapter 2: Sect.		k Sons, Sing	gapore, 2006.		

	Unit 3: Chapter 2: Sections 2.11, 2.12, 2.13, 2.14
	Unit 4: Chapter 3: Sections 3.4, 3.5, 3.7, 3.8,
	Unit 5: Chapter 3: Sections 3.9, 3.10, 3.11
	Reference Books:
	1. John. B. Fraleigh, A First Course in Abstract Algebra , 7th Edition, Addison-Wesley, New Delhi, 2003.
	2. P. B. Bhattacharya, S. K. Jain & S. R. Nagpaul, Basic Abstract Algebra , Cambridge University Press, USA, 1986.
	3. Charles Lanski, Concepts in Abstract Algebra, AMS, USA, 2010.
	4. M. Artin, Algebra , Prentice-Hall of India, New Delhi, 1991.
	5. D. S. Dummit & R. M. Foot, Abstract Algebra , John Wiley, New York, 1999.
	E-Recourses:
	1. https://onlinecourses.nptel.ac.in/noc18_ma15
	2. https://onlinecourses.nptel.ac.in/noc18_ma16
	On completion of the course students should be able to
	CO1: explain advances of the theory of groups.
Course	CO2: use Sylow's theorems in the study of finite groups.
Outcomes	CO3: classify finite abelian groups using direct products
	CO4: formulate some special types of rings and their properties.
	CO5: check the irreducibility of polynomials.

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	2	1	3
CO2	3	1	2	1	3
CO3	3	2	1	1	2
CO4	3	3	1	1	3
CO5	3	3	2	1	3

Semester	I	Course Code	24MATP0102
Course Title	Real Analysis		
No. of. Credits	4	No. of. contact hours per week	4
New Course/		If revised, Percentage of	
Revised		Revision effected	
Course		(Minimum 20%)	
Category	Core Course		
Scope of the	Advanced Skill		
Course	Advanced 5km		

Cognitive Levels addressed by the course	 Understanding the fundamentals of sets and axioms (K1 & K2-Rememberi understanding). Understanding the geometry of metric spaces and identifying open, closed and compact sets in metric spaces (K2 & K4 -Remembering and Analyzing Evaluating the limit of a sequence/series by analysing the convergence of the sequence/series (K4 & K5-Analyzing and Evaluating). Applying open & closed set to study continuous and discontinuous function Applying). Identifying differentiable functions and evaluate its derivatives (K4 & K5 and Evaluating) 	c, connected s). the ons (K3-
Course Objective	The Course aims to impart the concepts of sets and functions on metric spaces	3.
Unit	Content	No. of. Hours
I	The real and complex number systems: Introduction, Ordered sets – Fields – The real field - The extended real number system - The complex field - Euclidean spaces.	13
II	Basic Topology: Finite - Countable and Uncountable sets - Metric spaces - Compact sets - Perfect sets - Connected sets.	13
III	Numerical Sequences and Series: Convergent sequences – Subsequences – Cauchy sequences – Upper and lower limits – Some special sequences – Series – The number e – The root and ratio tests – Power series – Summation by parts – Absolute convergence – Addition and multiplication of series – Rearrangements.	16
IV	Continuity: Limits of functions - Continuous functions - Continuity and compactness - Continuity and connectedness - Monotonic functions - Infinite limits and limits at infinity.	11
V	Differentiation: The derivative of a real function - Mean value theorems - The continuity of derivatives - L'Hospital's rule - Derivatives of Higher order - Taylor's theorem - Differentiation of vector valued functions.	13
References	 Text Book: Walter Rudin, Principles of Mathematical Analysis, 3rd Edition, International Book Company, Singapore, 1982. Units 1-5: Chapters: 1 – 5 (Including Appendix of chapter 1). Reference Books: Tom M. Apostol, Mathematical Analysis, Narosa Publishing House, New 2. G. F. Simmons, Introduction to Topology and Modern Analysis, McG Delhi, 2004. R. G. Bartle & D.R. Sherbert, Introduction to Real Analysis, John Willyork, 1982. Kenneth A. Ross, Elementary Analysis: The theory of Calculus, Spring 2004. N. L. Carothers, Real Analysis, Cambridge University Press, UK, 2000. S. C. Malik, Mathematical Analysis, Willey Eastern Ltd., New Delhi, 1986. 	Delhi, 1997. Graw- Hill, New ley & Sons, New ger, New York,

	E-Recourses:
	1. http://nptel.ac.in/courses/109104124/
	2. http://nptel.ac.in/courses/111101100/
	On completion of the course students should be able to
	CO1: Discuss various axioms and properties of real and complex numbers.
Course	CO2: Identify the topological properties of sets in metric spaces.
Outcomes	CO3: Compute the limits of convergent sequences/series.
	CO4: Identify the topological properties of functions defined on metric spaces.
	CO5: Evaluate the derivative of real valued functions.

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	3	2	1
CO2	3	2	3	1	2
CO3	3	3	2	2	2
CO4	3	3	2	1	2
CO5	3	3	2	1	2

Semester	I	Course Code	24MATP01	03
Course Title	Advanced Ordinary Differential E	Equations		
No. of. Credits	4	No. of. contact hours per week		4
New Course/ Revised Course	Revised Course	If revised, Percentage of Revision effected (Minimum 20%)	4	:0%
Category	Core Course			
Scope of the Course	Advanced Skill			
Cognitive Levels addressed by the course	differential equations (K3)		orems to ge	t solutions of
Course Objective	The Course aims to study in-d equations.	epth concepts and applications	s of ordinar	ry differential
Unit	Content No. of. Hours			
I	Existence and Uniqueness of Solutions: Introduction - Successive approximations - Picard's theorem - Continuation and dependence of initial conditions - Existence of Solutions in the large - Existence and Uniqueness for Systems - Fixed point method.			13

II	Differential Equations of Higher Order: Introduction – Higher order Equations – Linear Dependence and Wronskian – Basic Theory for linear Equations – Homogeneous Linear Equations with Constant Coefficients – Equations with Variable coefficients – Method of Variation of Parameters.	12				
III	Systems of linear differential equations: Introduction - Systems of first order equations - Existence and uniqueness theorem - Fundamental matrix - Non homogeneous linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficients - Variation of Parameters.					
IV	Solution in Power Series: Introduction – Second – order Linear Equations with Ordinary Points – Legendre Equations and Legendre Polynomials – Second – Order Equations with Regular Singular Points – Bessel's Functions.	13				
V	Boundary value problem: Introduction - Strum Liouville problem - Green's function - Applications of boundary value problems - Picard's theorem.	13				
References	Text Book: 1. S. G. Deo, V. Raghavendra, Rasmita Kar & V. Lakshmikantham, Text bo Differential Equations, Third Edition, McGraw-Hill Education (India) Delhi, 2016 Unit 1: Chapter 2: Sections 2.1 to 2.9 Unit 2: Chapter 4: Sections 4.1 to 4.2, 4.4 to 4.8 Unit 3: Chapter 5: Sections 5.1 to 5.9 Unit 4: Chapter 6: Sections 6.1 to 6.5 Unit 5: Chapter 8: Sections 8.1 to 8.5 Reference Books: 1. M.E. Taylor, Introduction to Differential Equations, AMS Indian Edition, 2. Earl. A. Coddington, An Introduction to Ordinary Differential Equations, Pvt. Ltd., New Delhi, 2013. 3. G. F. Simmons, S. G. Krantz, Differential Equations: Theory, Technique an Tata McGraw Hill Book Company, New Delhi, India, 2007. 4. M. Barun, Differential Equations and Their Applications, 4th Edition, Sprin E-Recourses: 1. https://onlinecourses.nptel.ac.in/noc18_ma10 2. https://nptel.ac.in/courses/111/107/111107111/	Pvt. Ltd., New 2011. PHI Learning d Practice,				
Course Outcomes	On completion of the course students should be able to CO1: analyze the existence and uniqueness of solutions of Differential Equation CO2: solve higher order ODE using various techniques. CO3: analyze the existence and uniqueness of solutions of system of Differentia CO4: solve differential equations using power series method. CO5: solve boundary value problems.					

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	2	2	2	2	3
CO2	2	3	2	2	2
CO3	1	2	1	2	3
CO4	1	2	2	1	3
CO5	1	2	2	2	2

Semester	I	Course Code	24MATP0	0104		
Course Title	Numerical Analysis					
No. of. Credits	No. of. contact hours per week 4					
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)				
Category	Core Course					
Scope of the Course	Employability					
Cognitive Levels addressed by the course	 Knowing large number Understanding numeri Applying algorithms now 					
Course Objective	The Course aims to develop skills to solve many physical problems in an effective and efficient manner using different numerical techniques.					
Unit	Content No. of. Hours					
I	Transcendental and polynomial equations: Rate of convergence Secant Method-Regula Falsi Method-Netwon Raphson Method- Muller Method and Chebyshev Method. Polynomial equations: Descartes' Rule of Signs- Iterative Methods: Birge-Vieta method, Bairstow's method Direct Method: Graeffe's root squaring method.					
II	Interpolation and curve fitting: Lagrangian polynomials - Divided differences - Interpolation with cubic spline - Least square approximation of functions.					
III	Numerical differentiation and integration: Numerical differentiation derivatives using Newton's forward and backward formula -Derivatives using Stirling's formula - Trapezoidal rule - Simpson's 1/3rd rule - 3/8 rule -Weddle's rule - Errors in quadrature formula.					
IV	Numerical solution of ordinary differential equations: The Taylor series method – Picard's method - Euler and modified Euler methods – Runge – Kutta methods - Milne's method - The Adams - Moulton method.					

V	Numerical Solution of Partial Differential Equations: Introduction - Difference quotients - Geometrical representation of partial differential quotients - Classification of partial differential equations - Elliptic equations- Solutions to Laplace's equation by Liebmann's iteration process - Poisson's equations and its solutions - Parabolic equations - Crank - Nicholson method - Hyperbolic equations.					
References	Text Books: 1. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International (p) Limited Publishers, New Delhi, Sixth Edition 2012. Unit 1: Chapter 2: Sections 2.5,2.9 2. Curtis. F. Gerald, Patrick & O. Wheatley, Applied Numerical Analysis, 5th Edition, Pearson Education, New Delhi, 2005 Unit 2: Chapter 3: Sections 3.1, 3.2, 3.3, 3.4, 3.7. 3. V. N. Vedamurthy & N. Ch. S. N. Iyengar, Numerical Methods, Vikas Publishing House, Pvt. Ltd., Noida, 2000. Unit 3: Chapter 9: Sections 9.1 to 9.4, 9.6 to 9.12. Unit 4: Chapter 11: Sections 11.4 to 11.20. Unit 5: Chapter 12: Sections 12.1 to 12.9. Reference Books: 1. R. L. Burden & J. Douglas Faires, Numerical Analysis, Thompson Books, USA, 2005. 2. P. Kandasamy, K. Thilagavathy & K. Gunavathi, Numerical Methods, S. Chand & company PVT. LTD. E-Recourses: 1. http://nptel.ac.in/courses/111107105/					
Course Outcomes	On completion of the course students should be able to CO1: Apply different methods to solve the system of equations CO2: Realize the nature of different curves along with specified properties					

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	3	3	1	2
CO2	3	3	3	3	2
CO3	2	2	3	3	3
CO4	3	3	2	3	1
CO5	1	2	3	3	3

Semester	I	Course Code	24MATP0	105		
Course Title	Discrete Mathematics					
No. of. Credits	4	No. of. contact hours per week		4		
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)				
Category	Core Course					
Scope of the Course	Advanced Skill					
Cognitive Levels addressed by the course Course Objective	 Knowing the concepts of basic Understanding the permutatio Applying Inclusion-exclusion Evaluating number theoretical The Course aims to impart various numbers. 	n and combinatorial problem (K principle to real life problems (K problems by using number theo	(-2) (-3) oretic functi	ons (K-3)		
Unit		No. of. Hours				
I	Four basic counting principles - P of sets -Permutations of multi set principle: simple form - strong theorem - Unimodality of binomi Newton's binomial theorem.					
II	The inclusion – exclusion print Derangements – Permutations v sequences – Generating functio Solving linear homogeneous rec recurrence relations.	13				
III	Divisibility theory in the integ algorithm - The greatest commo Diophantine equation. Primes a theorem of arithmetic -The sieve	13				
IV	The theory of congruence: Basic properties of congruence - Linear congruence and the Chinese Reminder Theorem -Fermat's Theorem: Fermat's little theorem and pseudoprimes - Wilson's theorem - The Fermat-Kraitchik factorization method.					
V	Number theoretic functions: The sum and number of divisors - The Mobius inversion formula. Euler's generalization of Fermat's theorem: Euler's Phi function-Euler's theorem - Some properties of Phi function. Primitive roots: The order of an integer modulo <i>n</i> - Primitive roots for primes - Composite numbers having primitive roots.					

	m . p. 1					
	Text Books:					
	1. Richard A. Brualdi, Introductory Combinatorics , 5 th edition, Pearson Education Inc.					
	England, 2010.					
	Unit 1: Chapter 2: Sections 2.1 - 2.5. Chapter 3: Sections 3.1, 3.2. Chapter 5: Sections					
	5.1 – 5.5.					
	Unit 2: Chapter 6: Sections 6.1 - 6.4. Chapter 7: Sections 7.1 -7.5.					
	2. David M. Burton, Elementary Number Theory , 6 th Edition, Tata McGraw Hill, New					
	Delhi, 2006.					
	Unit 3: Chapter 2: Sections 2.1 - 2.5, Chapter 3: Sections 3.2 - 3.3.					
	Unit 4: Chapter 4: Sections 4.2, 4.4, Chapter 5: Sections 5.2 - 5.4.					
	Unit5: Chapter 6: Sections 6.1, 6.2, Chapter 7: Sections 7.2, 7.3,					
Defense	Chapter 8: Sections 8.1 - 8.3.					
References	Reference Books:					
	1. S. Lipschutz & M. Lipson, Discrete Mathematics (Schaum's Outlines), Revised 3rd					
	Edition, Tata McGraw-Hill Publishing Company, New Delhi, 2017.					
	2. J. Truss, Discrete Mathematics for Computer Scientists, Pearson Education Limited,					
	England, 1999.					
	3. Tom. M. Apostol, Introduction to Analytic Number Theory , Springer, New Delhi, 1993.					
	4. Thomas Koshy, Elementary Number Theory , Elsevier, California, 2005.					
	5. N. Robbins, Beginning Number Theory , 2nd Edition, Narosa Publishing House, New					
	Delhi, 2007.					
	E-Recourses:					
	1. https://www.tutorialspoint.com/discrete_mathematics/					
	2. home.iitk.ac.in/~arlal/book/mth202.pdf					
	On completion of the course students should be able to					
	CO1: Outline the ideas of permutations, combinations and its properties					
Course	CO2: Apply the permutations and combinations to solve problems					
Outcomes	CO3: Predict the concepts of divisibility and related algorithms					
	CO4: Analyse the properties of congruence relations					
	CO5: Explain the number theoretic functions					

PО	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	2	2	2
CO2	3	1	2	1	2
CO3	2	2	1	2	2
CO4	2	2	1	2	2
CO5	2	2	1	2	2

Semester	II	Course Code	24MATP()206		
Course Title	Linear Algebra					
No. of. Credits	4	No. of. contact hours per week		4		
New Course/ Revised Course	If revised, Percentage of Revision effected (Minimum 20%)					
Category	Core Course					
Scope of the Course	Advanced Skill					
Cognitive Levels addressed by the course	 Recognizing some advances of vector spaces, inner product spaces and linear transformations (K1-Knowing). Discussing certain canonical forms of vector spaces, visualizing linear transformations in matrix form, diagonalization of quadratic forms, dual spaces (K2-Understanding). Using Gram-Schmidt Orthogonalization process to find an orthonormal basis (K3-Apply). Examining the linear independence and orthogonality of set of vectors, dimension of vector spaces, linear transformations (K4-Analyse). Constructing linearly independent sets, basis, subspaces, linear transformations in a vector space (K6-Create). 					
Course Objective	The Course aims to introduce som	e important concepts of vector s	paces.			
Unit		No. of. Hours				
I	Vector spaces: Elementary basic spaces – Direct sum- Subspace- Lit - Dual spaces – Annihilators			14		
II	Linear Transformations: The algebra of linear transformations – Regula linear maps – rank of a linear transformation – Characteristic roots Matrices: Matrix of a linear transformation – Linear transformation corresponding to a matrix – Algebra of matrices – Change of basis.			13		
III	Canonical Forms: Triangular for decomposition of vector spaces: Jo	ions - A	13			
IV	Inner product spaces – Orthogo Complement – Trace and Transpo	12				
V	Hermitian - Unitary and Normal Transformations – Diagonalization - Real Quadratic forms – Sylvester's law of inertia.			12		
References	Quadratic forms – Sylvester's law of inertia. Text Book: 1. I. N. Herstein, Topics in Algebra, 2nd Edition, John Wiley & Sons, Singapore, 1993. Unit 1: Chapter 4: Sections 4.1, 4.2, 4.3. Unit 2: Chapter 6: Sections 6.1, 6.2, 6.3. Unit 3: Chapter 6: Sections 6.4, 6.5, 6.6.					

	Unit 4: Chapter 4: Section 4.4, Chapter 6: Sections 6.8.
	Unit 5: Chapter 6: Sections 6.10, 6.11.
	Reference Books:
	1. Vivek Sahai & Vikas Bist, Linear Algebra, Narosa Publishing House, New Delhi, 2002.
	2. A. R. Rao & P. Bhimashankaram, Linear Algebra , Hindustan Book Agency, New Delhi, 2000.
	3. J. S. Golan, Foundations of Linear Algebra , Kluwer Academic publisher, Tel Aviv 1995.
	4. Kenneth Hoffman & Ray Kunze, Linear Algebra , Prentice-Hall of India Pvt., New Delhi, 2004.
	5. S. Kumaresan, Linear Algebra: A Geometric Approach , Prentice Hall of India, New Delhi, 2006.
	E-Recourses:
	1. https://onlinecourses.nptel.ac.in/noc18_ma16
	On completion of the course students should be able to
	CO1: Identify the advances of vector spaces and linear transformations.
Course	CO2: Analyse the concepts of linear algebra in geometric point of view.
Outcomes	CO3: Visualize linear transformations as matrix form.
	CO4: Decompose a given vector space into certain canonical forms.
	CO5: Formulate several classes of linear transformations and their properties.

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	3	3	1	3
CO2	3	3	3	1	3
CO3	3	3	2	1	3
CO4	3	2	2	1	3
CO5	3	3	3	1	3

Semester	II	Course Code	24MATP0207
Course Title	Advanced Real Analysis		
No. of. Credits	4	No. of. contact hours per week	4
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)	
Category	Core Course		

Advanced Skill				
 Interpreting the geometry of integrals and evaluating the integral values Analysing and Evaluating). Understanding the concepts of uniform convergence and apply them to ederivatives and integrals (K2 & K3 -Remembering and Applying). Understanding the concepts trigonometric functions and applying them Fourier series. (K2 & K3-Understanding and Applying). Understanding the concepts of functions of several variables and evaluating derivatives of multi-variable functions (K2 & K5 Understanding and Evaluating Applying Implicit function theorem to Identifying solutions of differenting (K3 & K6 – Applying and Creating). 	evaluate the to study ing the luating) al equations			
_ ~	tions, sequences			
and series of functions.				
Content	No. of. Hours			
The Riemann-Stieltjes integral: Definition and existence of the integral - Properties of the integral - Integration and differentiation - Integration of vector valued functions - Rectifiable curves.				
Sequences and series of functions: Discussion of Main problem - Uniform Convergence - Uniform convergence and continuity - Uniform convergence and Integration - Uniform convergence and differentiation - Equicontinuous families of functions - The Stone-Weierstrass theorem.				
Some special functions: Power series - The exponential and Logarithmic functions - The trigonometric functions - The algebraic completeness of the complex field - Fourier Series - The Gamma functions.	13			
Functions of several variables: Linear transformations – Differentiation - The contraction principle - The inverse function theorem.	13			
The implicit function theorem - The rank theorem - Determinants - Derivatives of higher order - Differentiation of integrals.	13			
 Text Book: Walter Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw – Hill International Book Company, Singapore, 1982. Unit 1: Chapter 6, Unit 2: Chapter 7, Unit 3: Chapter 8. Unit 4, 5: Chapter 9. Reference Books: Tom M. Apostol, Mathematical Analysis, Narosa Publishing House, New Delhi, India 1997. G. F. Simmons, Introduction to Topology and Modern Analysis, 3rd Ed., McGraw- Hill New Delhi, 2004. S. C. Malik, Mathematical Analysis, Wiley Eastern Ltd., New Delhi, 1985. 				
	 Interpreting the geometry of integrals and evaluating the integral values Analysing and Evaluating). Understanding the concepts of uniform convergence and apply them to derivatives and integrals (K2 & K3 - Remembering and Applying). Understanding the concepts trigonometric functions and applying them Fourier series. (K2 & K3-Understanding and Applying). Understanding the concepts of functions of several variables and evaluate derivatives of multi-variable functions (K2 & K5 Understanding and Evaluation). Applying Implicit function theorem to Identifying solutions of differenti (K3 & K6 - Applying and Creating). The Course aims to introduce the concept of integration of real-valued functions and series of functions. Content The Riemann-Stieltjes integral: Definition and existence of the integral - Properties of the integral - Integration and differentiation - Integration of vector valued functions - Rectifiable curves. Sequences and series of functions: Discussion of Main problem - Uniform Convergence - Uniform convergence and differentiation - Equicontinuous families of functions - The Stone-Weierstrass theorem. Some special functions: Power series - The exponential and Logarithmic functions - The trigonometric functions - The algebraic completeness of the complex field - Fourier Series - The Gamma functions. Functions of several variables: Linear transformations - Differentiation - The contraction principle - The inverse function theorem. The implicit function theorem - The rank theorem - Determinants - Derivatives of higher order - Differentiation of integrals. Text Book: Walter Rudin, Principles of Mathematical Analysis, 3rd Edition, International Book Company, Singapore, 1982.			

	E-Recourses:
	1. https://nptel.ac.in/courses/111/106/111106053/
	2. https://nptel.ac.in/courses/111/106/111106153/
	On completion of the course students should be able to
	CO1: Evaluate the integrals of a bounded function on a closed bounded interval.
Course	CO2: Compute the pointwise limit and Uniform limit of sequences of functions.
Outcomes	CO3: Analyse the convergence of Fourier series
	CO4: Evaluate the derivative of functions of several variables
	CO5: Compute higher order derivatives for vector valued functions

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	3	2	1
CO2	3	3	2	2	2
CO3	3	3	2	1	2
CO4	3	3	2	2	2
CO5	3	3	2	1	2

Semester	II	Course Code	24MATP0	208		
Course Title	Partial Differential Equations and Applications					
No. of. Credits	4	4				
New Course/ Revised Course	New Course					
Category	Core Course					
Scope of the Course	Advanced Skill					
Cognitive Levels addressed by the course	 Identify various basic concepts on Partial Differential Equations (K1) To study second order P.D.E and its Classifications (K2) To study the results to Laplace's Equation, Wave Equation & Heat Equation(K4) 					
Course Objective	The Course aims to study in-depth concepts and applications of partial differential equations.					
Unit	Content No. of. Hours					
I	First Order P.D.E: Curves and Surfaces - Genesis of First Order P.D.E Classification of Integrals - Linear Equations of the First Order - Pfaffian Differential Equations - Compatible Systems - Charpit's Method - Jacobi's Method.			13		

	Linear Integral Surfaces Through a Given Curve - Quasi-Linear Equations -				
II	Non-linear First Order P.D.E. Second Order P.D.E.: Genesis of Second	12			
	Order P.D.E Classification of Second Order P.D.E.				
	Wave Equation: One-Dimensional Wave Equation - Vibrations of an				
III	Infinite String - Vibrations of a Semi-infinite String - Vibrations of a String	13			
	of Finite Length (Method of separation of variables).				
	Laplace's Equation: Boundary Value Problems - Maximum and Minimum				
	Principles - The Cauchy Problem - The Dirichlet Problem for the Upper				
IV	Half Plane - The Neumann Problem for the Upper Half Plane - The	13			
1 4	Dirichlet Interior Problem for a Circle - The Dirichlet Exterior Problem for	10			
	a Circle - The Neumann Problem for a Circle - The Dirichlet Problem for a				
	Rectangle - Harnack's Theorem .				
	Heat Equation: Heat Conduction Problem - Heat Conduction - Infinite Rod				
V	Case - Heat Conduction Finite Rod Case - Duhamel's Principle - Wave	13			
	Equation - Heat Conduction Equation.				
	Text Book:				
	1. T. Amarnath, An Elementary Course in Partial Differential Equations, 2nd Ed, Narosa				
	Publishing Company, 2010.				
	Unit 1: Chapter 1: Sections 1.1 to 1.8				
	Unit 2: Chapter 1, 2: Sections 1.9 to 1.11 & 2.1,2.2				
	Unit 3: Chapter 2: Sections 2.3.1 to 2.3.5				
	Unit 4: Chapter 2: Sections 2.4.1 to 2.4.10				
Defense	Unit 5: Chapter 2: Sections 2.5 to 2.6				
References	Reference Books:				
	1. I. N. Snedden, Elements of Partial Differential Equations, Dover, 2006.				
	2. F. Treves, Basic Linear Partial Differential Equations , Dover, 2006.				
	3. A.K. Nandakumaran and P.S. Datti, Partial Differential Equations, O	Classical Theory			
	with a Modern Touch, Cambridge University Press, 2020				
	E-Recourses:				
	1. https://onlinecourses.nptel.ac.in/noc18_ma10				
	2. https://nptel.ac.in/courses/111/107/111107111/				
	On completion of the course students should be able to				
	CO1: solve different types of first order partial differential equations.				
Course CO2: classify and solve second order partial differential equations.					
Outcomes	CO3: solve wave equations using different techniques.				
	CO4: solve different forms of Laplace equations.				
	CO5: solve heat equations and apply in real life problems.				

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	3	2	2
CO2	1	3	2	2	3
CO3	3	2	1	3	2
CO4	2	1	2	3	3
CO5	3	3	2	2	3

Semester	II	Course Code 24	MATP0209			
Course Title	Complex Analysis					
No. of. Credits	4	No. of. contact hours per week	4			
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)				
Category	Core Course					
Scope of the Course	Advanced Skill					
Cognitive Levels addressed by the course	 Know the concept of bilinear transformations, power series, operations of power series, conformal mappings, singularities, and residues (K1). Understand the importance of analytic functions, the uniform convergence of a series, the Cauchy's inequality and applications and argument principles (K2). Apply the concept of the complex integration, Cauchy's integral formula to solve integral problems, maximum modulus principles, and the residue theorem to find integral values (K3). Analyse the analyticity of a function (K4). Evaluate the values of real integrals (K5). 					
Course Objective	The Course aims to impart variously plane.	us concepts about the analytic fur	nctions in the complex			
Unit		Content	No. of. Hours			
I	Analytic Functions: Cauchy–Riemann equation – Analyticity - Harmonic functions - Bilinear transformations and mappings: Basic mappings - Linear fractional transformations.					
II	Power Series: Sequences revisited - Uniform convergence - Maclaurin and Taylor Series - Operations on power series - Conformal mappings.					
III	Complex Integration and Cauchy Line Integrals - Cauchy's Theorem	tions - 13				

	Applications of Cauchy's Theorem: Cauchy's integral formula - Cauchy's				
IV	inequality and applications - Maximum modulus theorem- Schwarz's 12				
	Lemma.				
	Laurent series and the residue theorem: Laurent Series - Classification of				
V	singularities - Evaluation of real integrals - Argument principle- Rouche's	12			
	Theorem- Open Mapping Theorem.				
	Text Book:				
	1. S. Ponnusamy & Herb Silverman, Complex Variables with Application	ons, Birkhauser,			
	Boston, 2006.				
	Unit 1: Chapter 5: Sections 5.1, 5.2, 5.3, Chapter 3: Sections 3.1, 3.2				
	Unit 2: Chapter 6: Sections 6.1, 6.2, 6.3, 6.4 Chapter 11: Section 11.1				
	Unit 3: Chapter 7: Sections 7.1, 7.2, 7.3, 7.4				
	Unit 4: Chapter 8: Sections 8.1, 8.2, 8.3				
	Unit 5: Chapter 9: Sections 9.1, 9.2, 9.3, 9.4				
	Reference Books:				
	1. S. Ponnusamy, Foundations of Complex analysis , 2 nd Edition, Narosa P	ub., New Delhi,			
D 0	2005.				
References	2. V. Karunakaran, Complex Analysis , Narosa Publishing House, New Delhi, 2002.				
	3. R.V. Churchill & J. W. Brown, Complex Variables & Applications , 9th E	dition, Mc. Graw			
	Hill, New Delhi, 2021.	1 NT 37 1			
	4. John. B. Conway, Functions of One Complex Variable , Springer-Ve	riag, New York,			
	1978.	lman Cahaum la			
	5. Murray R. Spiegel, Seymour Lipschutz, John J. Schiller, Dennis Spel Outline of Complex Variables, 2 nd Edition, McGraw Hill, 2009.	illiali, Schaum 8			
	6. Lars. V. Ahlfors, Complex Analysis , 3 rd edition, McGraw Hill 1	oook company			
	International Edition, Singapore, 1979.	ook company,			
	E-Recourses:				
	1. https://nptel.ac.in/courses/111/106/111106141/				
	2. https://nptel.ac.in/courses/111/103/111103070/				
	On completion of the course students should be able to do				
	CO1: Explain about analytic function and transformations				
Course	CO2: Examine power series of analytic function				
Outcomes	CO3: Discuss the concept of complex integration				
	CO4: Apply Cauchy's theorem to evaluate contour integrals				
	CO5: Classify the singularities and residues of complex functions				

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	2	1	2	1	2
CO2	3	2	2	1	2
CO3	3	2	2	1	2
CO4	3	2	2	1	1
CO5	2	3	2	3	3

Semester	п	Course Code	24MATPO	210	
Course Title	Mathematical Methods				
No. of. Credits	4	No. of. contact hours per week		4	
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)			
Category	Core Course				
Scope of the Course	Advanced Skill				
Cognitive Levels addressed by the course	 Knowing different methods of Understanding the in-build t Applying various transforma 	echniques of calculations (K2)			
Course Objective	The Course aims to learn vario applications.	us integral equations, transfor	mation tecl	nniques and its	
Unit		Content		No. of. Hours	
I	Integral equations: Types of integral differential equation into integrate value problem into a Volterra integrated Method of converting a boundary equation — Solution of Homogensecond kind with separable kernels — Solutions of Fredholms in the separable kernels — Problems	13			
II	Method of successive approximations: Introduction - Iterated kernels or functions - Resolvent (or reciprocal) kernel - Solution of Fredholm integral equation of the second kind by successive substitutions - Solution of Volterra integral equation of the second kind by successive approximations - Reciprocal functions Neumann series -Solutions of Volterra integral equation of the second kind when its kernel is of some particular form - Solution of Volterra equation of the second kind by reducing to differential equation.				
III	Singular integral equations - The solution of Abel's integral equation - Some general form of Abel's singular integral equation - Problem- Applications of integral equation and Green's functions to ordinary differential equation - Green's function- Conversion of a boundary value problem into Fredholm's integral equation - Some special cases - Examples based on construction of Green's functions and problems.				
IV	Fourier Transforms - Definition- transform - Fourier transforms Parsevel's relation for Fourier tran	of derivatives - Convolution	theorem -	13	

V	Functionals – Euler's equation – Solutions of Euler's equation – Geodesics – Isoperimetric problems – Several dependent variables – Functionals involving higher order derivatives.			
	<u> </u>			
References	 M. D. Raisinghania, Integral Equations and boundary value Problems, Third Revised Edition, S. Chand & Company Ltd. New Delhi, 2010. Unit I: Chapter 2 Sections 2.1 to 2.6 and Chapter 3 Sections 3.1 to 3.3 Unit 2: Chapter 5 Sections 5.1 to 5.15 Unit 3: Chapter 8, Section 8.1 to 8.6, Chapter 11 Section 11.1 to 11.8 I. N. Sneddon, The use of Integral Transform, Tata McGraw Hill, New Delhi, 1972. Unit 4: Chapter 2, Section 2.1-2.6, 2.9, 2.10. B.S. Grewal, Higher Engineering Mathematics, 39th edition, Khanna publishers, New Delhi, 2016. Unit 5: Chapter 33.1-33.8 			
	Reference Books:			
	1. J. K. Goyal & K. P. Gupta, Laplace and Fourier Transforms, 12th Edition, Pragati			
	Prakashan Meerukt, 2000.			
	2. W. V. Lovitt, Linear Integral equations , Dover Publications, New York, 1950.			
	E-Recourses:			
	1. http://nptel.ac.in/courses/111107103/			
	2. https://onlinecourses.nptel.ac.in/noc18_ma12			
	3. http://nptel.ac.in/courses/111107103/			
	On completion of the course students should be able to			
	CO1: Apply the various concepts of integral equations in various problems			
Course	CO2: Discuss the solutions of various integral equations			
Outcomes	CO3: Assess various theorems with proof techniques that will motivate to develop further			
	CO4: Create different functions based on applications			
	CO5: Apply different transformation techniques in solving problems.			

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	3	2	2	3
CO2	3	3	3	2	3
CO3	1	1	3	2	3
CO4	2	3	2	3	2
CO5	3	2	1	3	3

Semester	III	Course Code	24MATPO	311	
Course Title	Topology				
No. of. Credits	4	No. of. contact hours per week		4	
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)			
Category	Core Course				
Scope of the Course	Advanced Skill				
Cognitive Levels addressed by the course	 Recognizing topological spaces, basis, subspace topology, continuous functions, countability axioms, separation axioms (K1- Knowing). Understanding box topology, product topology, metric topology (K2-Understading). Applying results of topology to determine the connectedness, compactness of topological spaces. (K3-Applying). Investigating the connectedness and compactness in Real line (K4 - Analyse). Building new topological spaces, connected spaces, compact spaces, normal spaces, regular spaces and Hausdorff space from the existing topological spaces (K6 - Create) 				
Objective	The Course aims to introduce the of topological spaces.	rundamental concepts of topolo	ogy and stu	dy the properties	
Unit	1	Content		No. of. Hours	
Cint				110. 01. 110415	
I	Topological spaces -Basis for a topology - The order topology - The product topology on $X \times Y$ – The subspace topology - Closed sets and limit.			14	
II	Continuous functions - The product topology - The metric topology.			13	
III	Connected spaces - Connected sul Compact subspaces of the real line	-	ct spaces -	13	
IV	Limit point compactness - The countability and separation axioms: The countability axioms - The separation axioms.			12	
V	Normal spaces - The Urysohn's lemma - The Urysohn's metrization theorem - Tietz extension theorem - The Tychonoff theorem.			12	
References	Reference Books:	ns 2.1- 2.6 ns 2.7-2.10 ns 3.1, 3.2, 3.4, 3.5 ns 3.6, 4.1-4.2 ons 4.3, 4.4, 4.5, 4.6, Chapter 5: 5	5.1.		

	·					
	2. B. Mendelson, Introduction to Topology , CBS Publishers, Delhi, 1985.					
	3. Sze- Tsen Hu, Introduction to General Topology , Tata McGraw-Hill Publishing					
	Company Ltd., New Delhi, 1966.					
	4. S. Lipschutz, General Topology, Schaum's Series , McGraw-Hill New Delhi, 2011.					
	5. K. D. Joshi, Introduction to General Topology , New Age International Pvt. Ltd, New					
	Delhi, 1983.					
	6. J. L. Kelly, General Topology, Springer-Verlag, New York, 1975					
	7. James Dugundji, Topology , Allyn and Bacon INC, Boston, 1966.					
	E-Recourses:					
	1. https://nptel.ac.in/courses/111/106/111106054/					
	On completion of the course students should be able to do					
	CO1: Discuss several constructions of topological spaces					
Course	CO2: Analyse various properties of topological spaces					
Outcomes	CO3: Apply properties of continuous functions on topological spaces					
	CO4: Examine connected, compact, and normal topological spaces and their properties					
	CO5: Demonstrate various theorems on Normal Topological spaces					

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	3	3	1	2
CO2	3	3	3	1	3
CO3	3	3	3	2	2
CO4	3	3	3	1	2
CO5	2	3	2	1	2

Semester	III	Course Code	24MATP0312	
Course Title	Measure Theory			
No. of. Credits	4	No. of. contact hours per week	4	
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		
Category	Core Course			
Scope of the Course	Advanced Skill			
Cognitive Levels addressed by the course	 Understanding the basic concepts of measurable sets and measurable functions by applying open sets (K2 & K3 – Understanding and Applying). Interpreting geometrically the Lebesgue integration and evaluate it (K4 & K5 –Analysing and Evaluating). Understanding the Lebesgue integration on general spaces by applying Lebesgue 			

	 integration on real line. (K3 & K6-Applying and Creating). Understanding the concepts convergence of Lebesgue integrable functions. Remembering and Understanding) Generalising the concept of Lebesgue measure (K6 – Creating). 	tions(K1 & K2 –
Course Objective	The Course aims to introduce the fundamentals of measure and integration or	n the real line.
Unit	Content	No. of. Hours
I	Measure on the real line: Lebesgue outer measure - Measurable sets - Regularity - Measurable functions - Borel and Lebesgue measurability.	12
II	Integration of functions of a real variable: Integration of non-negative functions - The general integral - Integration of series - Riemann and Lebesgue integrals.	13
III	Abstract measure spaces: Measures and outer measures - Extension of a measure -Uniqueness of the extension - Completion of a measure - Measure spaces - Integration with respect to a measure.	14
IV	Inequalities and the L^p Spaces: The L^p Spaces - Convex functions - Jensen's inequality - The inequalities of Holder and Minkowski - Completeness of $L^p(\mu)$.	
V	Signed Measures and their derivatives: Signed measures and the decomposition - The Jordan decomposition - The Radon-Nikodym theorem - Some applications of the Radon-Nikodym theorem.	12
References	Text Book: 1. G.de Barra, Measure Theory and Integration, New Age International Delhi, 2003. Unit 1: Sections 2.1-2.5. Unit 2: Sections 3.1- 3.4. Unit 3: Sections 5.1- 5.6. Unit 4: Sections 6.1- 6.5. Unit 5: Sections 8.1-8.4. Reference Books: 1. H. L. Royden, Real Analysis, 3 rd Ed., Prentice Hall of India, New Delhi, 2. I. K. Rana, An Introduction to Measure and Integration, Narosa Publis Delhi, 2007. 3. Paul. R. Halmos, Measure Theory, Springer, New York, 2009 4. E. Hewitt & K. R. Stromberg, Real and Abstract Analysis, Wiley Verlag, E-Recourses: 1. http://nptel.ac.in/courses/111101100/	2005. hing House, New
Course Outcomes	On completion of the course students should be able to do CO1: Outline the concept of Lebesgue measure and integration. CO2: Interpret the geometric meaning of measurable functions and integration. CO3: Formulate the relationships between Riemann and Lebesgue integrals. CO4: Describe the applications of measure theory in other branches of Mathe CO5: Apply the techniques of measure theory to evaluate integrals.	

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	3	1	2
CO2	3	2	2	2	2
CO3	3	3	2	1	2
CO4	3	2	1	2	2
CO5	3	2	2	1	1

Semester	III	Course Code	24MATP0)313
Course Title	Probability and Statistics			
No. of. Credits	4	No. of. contact hours per week		4
New Course/ Revised Course	Revised Course	If revised, Percentage of Revision effected (Minimum 20%)		40%
Category	Core Course			
Scope of the Course	Advanced Skill			
Cognitive Levels addressed by the course	 K1: Knowing the concepts of probability, random variables, and distribution K2: Understanding the properties of moment generating functions K3: Applying central limit theorem for limiting problems in statistics K4: Analyzing various probability distributions K5: Evaluating estimations through various methods 			
Course Objective	The Course aims to learn the adva	nced theory of probability and	some statisti	cal techniques.
Unit		Content		No. of. Hours
I	Random variables and its Distributions: Introduction-Random Variable- Types of Random Variables-Probability Mass Function, Probability Density Function and Probability Distribution- Distribution Function-Functions of Random Variables and their Distributions.			12
II	Expectation, Variance and O Introduction-Expected value of value-Conditional Expectation- variables-Properties of variance- and Variance : Cauchy-Schwartz Inequality-Moments of Random Factorial Moment Generating fur	a random variable-Properties Variance and covariance Conditional Variance-Theore Inequality-Chebyshev's Inequa n variable-Moment Generation	of expected of Random ms on Mean ality-Marko's ng function-	14

	Characteristics of Moment Generating function-Cumulant and Cumulant		
	Moment Generating function- Properties of Moment Generating function- Characteristic function of k-dimensional random variables-Properties of Characteristic function.		
III	Convergence in probability-Weak Law of Large number-Strong Law of Large Numbers-Central Limit Theorem-Binomial distribution: Definition and origin-First four moments of the Binomial distribution-Generating functions of the Binomial distribution- Applications of Binomial distribution-Poisson distribution: Definition and applications-First four moments of the Poisson distribution-Generating functions of the Poisson distribution-Fitting of Poisson distribution-Normal distribution: Definition and remarks-Moments and Generating functions of Normal distribution-Fitting of Normal distribution-Properties of Normal distribution.	13	
IV	Method of Estimation: Introduction-Maximum Likelihood (ML) Method-Properties of ML Estimators-Method of Least Squares-Properties of Least squares Estimator-Method of Moment-Method of Minimum Chi-square-Bayes method of Estimation.	12	
V	Interval Estimation: Introduction-Method of construction of Confidence Interval- Pivotal-Method to find Confidence Interval-Confidence interval using large sample-Statistical Method of Confidence Interval-Confidence interval using Chebyshev's Inequality-Uniformly most accurate (UMA) Confidence Interval-Unbiased Confidence Interval-Confidence interval for the difference of two Means-Confidence interval for the Difference of two proportions.	13	
References	Text Book: 1. K. C. Bhuyan, Probability Distribution Theory and Statistical Inference Book Agency Pvt. Ltd., London, 2015. Unit.1 Section 2.1-2.6, Unit.2 Section 3.1-3.19 (Except 3.15, 3.16) Unit.3 Section 3.21-3.24, Section 7.1-7.4, 8.1-8.4-16.1-16.3, 16.5 Unit.4 Section 33.1-33.8. Unit.5 Section 35.1-35.6.	e , New Central	
references	 Reference Books: Robert V. Hogg & Allen T. Craig, Introduction to Mathematical Statistics, 7th Edition. Pearson Education, Singapore, 2012. Irwin Miller & Marylees Miller, John E. Freund's Mathematical Statistics, 8th Edition. Pearson Education, New Delhi, 2013. John E. Freund, Mathematical Statistics, 5th edition, Prentice Hall India, 1994. S.M. Ross, Introduction to Probability Models, Academic Press, India, 2014. 		

	E-Recourses: 1. https://onlinecourses.nptel.ac.in/noc18_ma19 2. https://onlinecourses.nptel.ac.in/noc18_ma22
	On completion of the course students should be able to CO1: Explain the basic concepts of probability and its properties.
	CO2: Construct the probability distribution of a random variable, based on a real-world
Course	situation, and use it to compute expectation and variance.
Outcomes	CO3: Compute probabilities based on practical situations using the binomial, normal and other distributions.
	CO4: Evaluate the limiting process of distributions and solve related problems.
	CO5: Constructing confidence intervals for ML estimators

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	2	3	2	2	2
CO2	1	3	1	3	2
CO3	2	3	2	2	2
CO4	2	3	1	2	2
CO5	1	3	1	2	2

Semester	III	Course Code	24MATP0314
Course Title	Optimization Techniques		
No. of. Credits	4	No. of. contact hours per week	4
New		If revised, Percentage of	
Course/	Revised Course	Revision effected	30%
Revised		(Minimum 20%)	
Course			
Category	Core Course		
Scope of the Course	Advanced Skill		
	 Entrepreneurship 		

Cognitive Levels addressed by the course	 Knowing the basic properties of convex function, Linear and non-linear programming Fibonacci method – Golden Section Method, Multi-dimensional constrained optimization and Dynamic Programming (K1). Understanding the cutting plane method, Transportation and Assignment problems, direct root method, Hooks and Jeeves method (K2). Applying the Revised simplex method – Duality concept – Dual simplex methods to solve linear programming problems. Applying Lagrange's multiplier method – Kuhn- Tucker conditions to solve the constrained non-linear programming problems (K3). Testing whether the solution is unique or not for one dimensional optimization using convexity (K4). Investigating the Non-linear programming problems in different type of optimizations methods (K5). Formulating some new iterative algorithms to solve Non-linear programming problems 			
Course	by using classical differential calculus(K6). The Course aims to impart the mathematical modelling skills through of	lifferent		
Objective	methods of optimization.	1111616111		
Unit	Content	No. of. Hours		
Oint	Introduction to convex set and convex function – Linear			
I	Programming problems: Simplex method – Revised simplex method – Duality concept – Dual simplex method.			
II	Integer Linear Programming: Branch – and Bound method – cutting	14		
	plane method - Zero - one integer problem - Transportation and			
	Assignment problems.			
	Unimodel function – one dimensional optimization: Fibonacci method			
TTT	- Golden Section Method - Quadratic and Cubic interpolation			
III	methods – Direct root method – Multidimensional unconstrained optimization: Univariate Method – Hooks and Jeeves method –			
	Fletcher – Reeves method - Newton's method.			
	Non- linear programming and optimization: Multivariable constrained			
IV	optimization with equality constraints - constrained optimization with			
	inequality constraints – Kuhn-Tucker conditions with non - negative			
	constraints – quadratic programming problem - Wolfe's modified			
	simplex method – Beal's method.			
	Dynamic Programming: Characteristics of Dynamic programming			
V	problems - Solving LLP by Dynamic Programming - Separable	12		
	Programming Algorithm - Geometric programming - Geometric -			
	Arithmetic mean inequality.			

	Text Books:
	1. H. A. Taha, Operations Research – An Introduction , 8 th Edition, Prentice –
	Hall of India, New Delhi, 2006.
	Unit 1: 3.3, 4.4, 7.1, 7.2
	Unit 2: Chapter 5 and Section 9.2
	2. S. S. Rao, Engineering Optimization , 3 rd Edition, New Age International
	Pvt. Ltd., Publishers, Delhi, 1998.
	Unit 3: Chapter 5 (Sections 5.1 – 5.12), Chapter 6 (Sections 6.4, 6.6, 6.12.2,
	6.13)
	Unit 4: Chapter 2 (Sections 2.4, 2.5)
References	Unit 5: Chapters 8 & 9.
	3. Kanti Swarup, Gupta P. K. & Man Mohan, Operations Research, S. Chand &
	Sons, New Delhi, 1995.
	Unit 4: Chapter 25 (Sections 25.6, 25.7), Chapter 26 (Sections 26.2, 26.5)
	Unit 5: Chapter 15 (Sections 15.1, 15.6)
	Chapter 25 (Section 26.7), Chapter 26 (Section 27.1)
	Reference Books:
	1. J. K. Sharma, Operations Research Theory & Applications, Macmillan India
	Ltd., New Delhi, 2006.
	2. G. Srinivasan, Operations Research: Principles & Applications , Prentice Hall of
	India, New Delhi, India, 2007.
	3. Frederick S. Hillier, Gerald J. Lieberman, Bodhibroto Nag, Preetam Basu, Introduction to Operations Research, 11th Ed, Tata McGraw Hill, 2021.
	-
	E- Resources:
	1. http://nptel.ac.in/courses/111107104/
Course Outcomes	On completion of the course students should be able to do
	CO1: Formulate Linear Programming problems and determine its
	solutions CO2: Discuss Integer Linear Programming problems
	CO3: Compute one dimensional optimization and Multidimensional unconstrained
	optimization problems
	CO4: Apply Multi-dimensional constrained optimization problems in Industries.
	CO5: Expertise in solving Geometric and Dynamic Programming problems

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	1	3	2	3	3
CO2	1	3	2	3	3
CO3	2	3	2	3	3
CO4	1	3	2	3	3
CO5	2	3	2	3	3

Semester	IV	Course Code	24MATP0	415
Course Title	Stochastic Processes			
No. of. Credits	4	No. of. contact hours per week		4
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		20%
Category	Core Course			
Scope of the Course	Advanced Skill			
Cognitive Levels addressed by the course	 processes in queuing systems Understanding the in-dept Markov chains. (Understand Applying the concept of Markov chains the solving techniques K4) 	 processes in queuing systems (Knowing-K1) Understanding the in-depth knowledge about stationary stochastic processes and Markov chains. (Understanding - K2) Applying the concept of Markov processes to real life problems. (Applying - K3) Analyses the solving technique for stochastic processes in queuing systems. (Analysing - 		
Objective			es and their a	
Unit	Content		No. of. Hours	
I	Random variables and stochastic processes: Generating functions - Stochastic processes: An Introduction - Markov chains: Definition and examples - Higher transition probabilities-Generalization of independent Bernoull trials: sequence of chain - dependent trials-Classification of states and chains - Determination of higher transition probabilities.			13
II	Markov process with discrete state space: Poisson process and its extensions Poisson process - Poisson process and related distributions - Generalization of Poisson process - Birth and death processes.			13
III	Markov processes with continuous state space: Introduction - Brownian motion - Weiner process - Differential equations for a Wiener Process - Kolmogrov equations - First passage time distribution for Weiner process - Ornstein - Uhlenbech process.			13
IV	Branching Processes: Introduction – Properties of generating functions of Branching processes – Distribution of the total number of progeny – Continuous –Time Markov branching process.			13
V	Applications in stochastic models: Queueing systems and models – Birth and death processes in queueing theory: Markovian models – Reliability models.			12
References	Edition, 2017.	ses, New Age International Privals 1.1 & 1.5, Chapter 2: Sections		, New Delhi, 4th

	Unit 2: Chapter 3: Sections 3.1 - 3.4.
	Unit 3: Chapter 4: Sections 4.1 - 4.6.
	Unit 4: Chapter 9: Sections 9.1, 9.2, 9.4, 9.7.
	Unit 5: Chapter 10: Sections 10.1, 10.2, 10.5.
	Reference Books:
	1. K. Basu, Introduction to Stochastic Process , Narosa Publishing House, New Delhi, 2003.
	2. Goswami & B. V. Rao, A Course in Applied Stochastic Processes, Hindustan Book
	Agency, New Delhi, 2011.
	3. G. Grimmett& D. Stirzaker, Probability and Random Processes, 3rd Ed., Oxford
	University Press, New York, 2001.
	E-Recourses:
	1. https://nptel.ac.in/courses/111102014/
	2. https://nptel.ac.in/courses/111103022/
	3. https://onlinecourses.nptel.ac.in/noc18_ma19
	On completion of the course students should be able to do
	CO1: Discuss about Stationary Stochastic Processes and Markov chains.
Course	CO2: Distinguish the Markov Process with discrete state space and continuous state space
Outcomes	CO3: Demonstrate Brownian Motions and its properties
	CO4: Outline branching processes and age dependent branching process
	CO5: Apply stochastic processes in queuing systems

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	1	2	3
CO2	2	2	2	3	2
CO3	2	2	3	2	2
CO4	1	2	2	3	3
CO5	2	3	2	3	3

Semester	IV	Course Code	24MATP0416
Course Title	Functional Analysis		
No. of. Credits	4	No. of. contact hours per week	4
New Course/		If revised, Percentage of	
Revised		Revision effected	
Course		(Minimum 20%)	
Category	Core Course		
Scope of the	A J J Cl.:11		
Course	Advanced Skill		

Cognitive Levels addressed by the course	 Know the concept of normed linear spaces, bounded linear operators, between Schauder basis and Hamel basis, separability (K1). Understand the importance of normed linear spaces, Hiene-Borel theolemma, Hahn-Banach extension theorem (K2). Apply the concept of norm in various other fields of Mathematics (K3). Analyse the boundedness of different kinds of operators (K4). Evaluate the norm of different kinds of operators (K5). Create new theoretical concept (K6). The Course aims to introduce basics of functional analysis with special empha 	orem and Riesz	
Objective	and Banach space theory.		
Unit	Content	No. of. Hours	
I	Norm on a linear space - Examples of normed Linear spaces - Seminorms and quotient spaces - Product space and graph norm - Semi-inner product and sesquilinear form - Banach spaces.	14	
II	Incomplete normed linear spaces - Completion of normed linear spaces - Some properties of Banach spaces - Baire category theorem (statement only) - Schauder basis and separability - Heine-Borel theorem and Riesz lemma - Best approximation theorems - Projection theorem.	13	
III	Operators on normed linear spaces - Bounded operators - Some basic results and examples - The space $B(X,Y)$ - Norm on $B(X,Y)$ - Riesz representation theorem - Completeness of $B(X,Y)$ - Bessel's inequality - Fourier expansion and Parseval's formula - Riesz-Fischer theorem.	13	
IV	Hahn-Banach theorem and its consequences - The extension theorem- Consequences on uniqueness of extension - Separation theorem	12	
V	Uniform boundedness principle - Its consequences - Closed graph theorem and its consequences - Bounded inverse theorem - Open mapping theorem - A stability result for operator equations.	12	
References	 Text Book: M. Thamban Nair, Functional Analysis - A First Course, Prentice Hall of India Pvt. Ltd., New Delhi, 2002. Unit 1: Chapter 2: Sections 2.1, 2.1.1, 2.1.2, 2.1.4, 2.1.6, 2.2. Unit 2: Chapter 2: Sections 2.1, 2.2.2, 2.2.3, 2.3 - 2.6. Unit 3: Chapter 3: Sections 3.1, 3.1.1, 3.2, 3.2.1, 3.3, 3.4.1,		

	4. Kreyszig, Introductory Functional Analysis with Applications , John Wiley & Sons, New York, 2006.				
	5. S. Kesavan, Functional Analysis , 2 nd Edition, Hindustan Book Agency, 2022.				
	6. Rami Shakarchi, Functional Analysis , Princeton Lectures in Analysis, 2013.				
	E-Recourses:				
	1. https://nptel.ac.in/courses/111/106/111106147/				
	On completion of the course students should be able to do				
	CO1: Outline the normed linear spaces and Banach spaces				
Course	CO2: Discuss about the completion of normed linear spaces				
Outcomes	CO3: Apply various operators on Banach spaces				
	CO4: Demonstrate the consequences of Hahn-Banach theorem				
	CO5: Critique the closed graph theorem and stability result for operator				

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	3	2	2
CO2	3	2	2	3	2
CO3	3	2	3	3	2
CO4	3	2	3	2	2
CO5	3	3	2	2	2

Semester	IV	Course Code	24MATP0	417
Course Title	GRAPH THEORY			
No. of. Credits	4	No. of. contact hours per week		4
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		
Category	Core Course			
Scope of the Course	Advanced Skill			
Cognitive Levels addressed by the course Course	 Knowing different types of graphs (K1) Understanding connectivity, independent sets and matching of graphs (K2) Applying graph coloring and planarity to study the properties of graphs (K4) Examining various bounds on domination number of graphs (K5) The course aims to impart the different concepts of theory of graphs.			
Objective Unit	Content No. of. Hours			

I	Basic results - Basic concepts - Sub graphs - Degrees of vertices - Paths and connectedness - Automorphism of simple graphs - line graphs - Operations on graphs.	14
II	Connectivity - Vertex cut and edge cut - Connectivity and edge connectivity. Trees - Definition - Characterization and simple properties - Counting the number of spanning trees - Cayley's formula-Application: Prism's Algorithm-Dijsktra Algorithm	12
III	Independent sets and Matchings: Introduction – Vertex independent sets and Vertex covering – Edge independent sets – Matching and factors. Eulerian and Hamiltonian graphs: Introduction - Eulerian graphs – Hamiltonian graphs.	13
IV	Graph Colorings: Introduction - Vertex colorings - Critical graphs. Planarity: Introduction - Planar and Non Planar graphs - Euler formula and its consequences - K5 and K3,3 are non- planar.	12
V	Dominating sets in graphs - Bounds on the domination number - Bounds in terms of order, Degree and packing	13
References	Text Books: 1. R. Balakrishnan & K. Ranganathan, A Text Book of Graph Theory, Sprin New York, 2000. Unit 1: Chapter I: Sections: 1.0 – 1.7 Unit 2: Chapter III : Sections: 3.0 – 3.2; Chapter IV: Sections: 4.0 – 4.2,4.4-4.5 4.7 Unit 3: Chapter V : Sections: 5.0 – 5.3; Chapter VI: Sections: 6.0 – 6.2; Chapter VII: 7.9 Unit 4: Chapter VII: Sections: 7.0 – 7.2; Chapter VIII : Sections: 8.0 – 8.3 2. Teresa W. Hayness, Stephen T. Hedetniemi, Peter J. Slater, & Marcel Dekker, Fundamental of Domination in Graphs, INC New York, 1998. Unit 5: Chapter 1, Chapter 2: Sections: 2.1-2.2 Reference Books: 1. F. Harary, Graph Theory, Addison-Wesley, Reading Mass., 1969. 2. J. A. Bondy and U. S. R. Murty, Graph theory with applications, The Match, New York, 1976. E-Recourses: 1. https://nptel.ac.in/courses/111/106/111106050/ 2. https://nptel.ac.in/courses/111/106/111106102/	
Course Outcomes	On completion of the course students should be able to do CO1: Identify various operations on graphs. CO2: Classify different types of graphs and their applications. CO3: Analyse the applications of different parameters of a graph. CO4: Predict the domination number and apply in real life problems. CO5: Compare different types of graphs and study its properties.	

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	2	1	3
CO2	1	3	2	3	2
CO3	2	3	3	2	2
CO4	3	2	1	3	3
CO5	3	3	3	2	1

Semester	III	Course Code 24	MATP03D1	
Course Title	Classical Dynamics			
No. of. Credits	3	3		
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		
Category	Discipline Centric Elective			
Scope of the Course	Advanced Skill			
Cognitive Levels addressed by the course	 To know the concepts of mechanical system, potential and kinetic energies, Lagrangian function and momentum, generating functions, Hamilton - Jacobi equation (K1) Understanding how to formulate differential equations of motion of a system and to solve by variational principle, Hamilton's principle, and the derivation of HJB equations (K2, K3) Lagrange's equations apply to solve physical problems and the Hamilton–Jacobi method employees to solve problems of differential equation in three-dimensional space (K3) To analyse about the variational principles, differential forms, generating functions, canonical transformations, and special transformations (K4) 			
Course Objective	The Course aims to study th	e system dynamics via non-relativistic the	ories and methods.	
Unit		Content	No. of. Hours	
I	Introductory Concepts: The mechanical system - Generalized coordinates - Constraints - Virtual work - Energy and momentum.			
II	Lagrange's equations: Derivation of Lagrange's equations - Examples - Integrals of the motion.			
III	Hamilton's Equations: Ham	lton's principle – Hamilton's equations.	10	

IV	Hamilton - Jacobi theory: Hamilton's principal function - The Hamilton - Jacobi equation.	9		
V	Canonical Transformations: Differential forms and generating functions - Lagrange and Poisson brackets.			
References	Text Book: 1. Donald T. Greenwood, Classical Dynamics, 3 rd Edition, Prentice-Hall New Delhi, 1990. Unit 1: Sections 1.1 to 1.5 Unit 2: Sections 2.1 to 2.3 Unit 3: Sections 4.1 to 4.2 Unit 4: Sections 5.1 to 5.2 Unit 5: Sections 6.1 & 6.3.	Private Limited,		
	 Reference Books: P. N. Singhal and S. Sareen, A Text Book on Mechanics, Anmol Publication New Delhi, 2000. Goldstein, Charles Poole, John Safko, Classical Mechanics, Addison Wesley 			
	E-Recourses: 1. http://www.damtp.Cam.ac.uk/user/tong/dynamics.html			
	On completion of the course students should be able to do CO1: Discuss the basic concepts of nonrelativistic classical dynamics			
Course	CO2: Apply Lagrange's equations to solve related mechanical problems			
Outcomes	CO3: Analyse variational principle, Hamilton principle and Hamilton's equation	ions		
	CO4: Explain the derivation and application of Hamilton-Jacobi Equations			
	CO5: Demonstrate the canonical transformations, Lagrange and Poisson brack	kets expressions		

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	2	1	3	2	3
CO2	3	3	2	2	3
CO3	3	3	2	1	3
CO4	1	3	2	2	2
CO5	2	2	1	3	3

Semester	III	Course Code	24MATP03D2
Course Title	Control Theory		
No. of. Credits	3	No. of. contact hours per week	3
New Course/ Revised		If revised, Percentage of Revision effected	

Course		Minimum 20%)			
Category	Discipline Centric Elective				
Scope of the Course	Advanced Skill				
Cognitive Levels addressed by the course	 Learning to know observability, control systems (K1) Understanding to design control and nonlinear system (K2) Apply the stability and stabilizat (K3) To analyse the uniform stability, varying, perturbed system and nonlinear system system and nonlinear system system and nonlinear system system and nonlinear system system system and nonlinear system syste	llability and observability Grantion for the various linear and asymptotic stability and optimonlinear systems. (K4)	mian matrix nonlinear p mal control	of linear time	
Course Objective	The Course aims to introduce basic t designing advanced control systems.	9	quired for a	nalysing and	
Unit	Co	ontent		No. of. Hours	
I	Observability: Linear systems – coefficient systems – Reconstruction	Observability Grammian – kernel – Nonlinear Systems	Constant	10	
II	Controllability: Linear systems – Controllability Grammian – Adjoint systems – Constant coefficient systems – Steering function – Nonlinear systems				
III		Stability: Stability – Uniform stability – Asymptotic stability of linear Systems – Linear time varying systems – Perturbed linear systems – 10			
IV	Stabilizability: Stabilization via linea Controllable subspace –Stabilization		hod –	9	
V	Optimal Control: Linear time varyin criteria – Matrix Riccati equation – I Nonlinear Systems			9	
References	Text Book: 1. K. Balachandran & J. P. Dauer, E	Elements of Control Theory, N	arosa, New	Delhi, 1999.	
	Reference Books: 1. R. Conti, Linear Differential Equ 2. R.F. Curtain and A.J. Pritchard Academic Press, New York, 1975 3. J. Klamka, Controllability of Dy 1991. E-Recourses: 1. https://ocw.mit.edu/resources/recourse-videos/ 2. https://nptel.ac.in/courses/10810	d, Functional Analysis and Mo 7. namical Systems, Kluwer Aca es-6-010-electronic-feedback-s	odern Appli	ied Mathematics, isher, Dordrecht,	

	On completion of the course students should be able to do
	CO1: Analyse linear and nonlinear control systems
Course	CO2: Evaluate observability problems of linear and nonlinear systems
Outcomes	CO3: Analyse the stability of linear and nonlinear systems
	CO4: Apply the stability theory in control systems
	CO5: Model the optimal control problems in science & engineering

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	2	3	1	2	2
CO2	3	2	1	2	3
CO3	1	2	1	3	2
CO4	3	2	1	2	3
CO5	2	1	3	1	3

Semester	III	Course Code	24MATP0	3D3	
Course Title	Optimal Control	·			
No. of. Credits	3	No. of. contact hours per week		3	
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)			
Category	Discipline Centric Elective				
Scope of the Course	Advanced Skill				
Cognitive Levels addressed by the course	 Learning to know optimal of a function/functional, basic variational problems, estrema of functions/functionals, (K1) Understanding to design matrix Riccati equation, Pontryagin minimum principle, HJB equation (K2) LQR problem using HJB equation, Fuel optimal control system (K3) To analyse the constrained optimal control (K4) To design optimal control of system using dynamic programming (K6) 				
Course Objective	The Course aims to introduce basic theories and methodologies required for analyzing and designing optimal control of dynamical systems.				
Unit	Content No. of. Hours				
I	Basic Concepts-Optimal of a func problems: Fixed –End time fixed-e Different cases for Euler –Lagran conditions: Direct Method- Lagran	end state system, Euler-Lagrange onge equation- Extrema of function	equation,	10	

	Extrema of Functional with conditions-Variational approach to optimal					
II	control systems: Terminal Cost Problem-Different Types of Systems-					
	Sufficient Condition- Summary of variational approach.					
	Problem Formulation - Finite -Time Linear Quadratic Regulator-Analytic					
III	Solution to the Matrix Differential Riccatic Equation-Infinite- Time LQR	9				
	System.					
	Constrained System- Pontryagin Minimum Principle- Necessary Conditions-					
IV	Dynamic Programming: Principle of Optimality –Optimal control Using	10				
l v	Dynamic Programming-Optimal Control of Continuous-Time Systems- The	10				
	Hamilton – Jacobi- Bellman Equation- LQR System Using H-J-B Equation.					
3.7	Constrained Optimal Control-TOC of a Double Integral System- Fuel-	0				
V	Optimal Control Systems.	9				
	Text Book:					
	1. D. S. Naidu: Optimal Control Systems , CRC Press, 2002.					
	Unit 1: Chapter 2: Section: 2.1-2.3, 2.5					
	Unit 2: Chapter 2: Sections: 2.6-2.8					
	Unit 3: Chapter 3: Sections: 3.1-3.4					
	Unit 4: Chapter 6: Sections: 6.1-6.4 (except 6.3.3)					
	Unit 5: Chapter 7: Sections: 7.1-7.3					
References	Reference Books:					
	1. F.L. Lewis, Optimal Control , John Wiley & Sons, Inc., New York, NY, 1986					
	2. M. Gopal, Modern Control System Theory , 2 nd Edition, New Age International, 1984.					
	3. E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Robert E. Krteger					
	Publishing Company, Florida, 1968.					
	E-Recourses:					
	1. https://onlinecourses.nptel.ac.in/noc17_ee11/preview					
	2. http://nptel.ac.in/syllabus/101108057/					
	On completion of the course students should be able to do					
	CO1: Determine the solutions of control system via Euler – Lagrange equation					
Course	CO2: Apply calculus of variations to solve the linear and nonlinear optimalcon	ntrol systems				
Outcomes	CO3: Outline the Linear Quadratic Optimal Control Systems					
	CO4: Employ Pontryagin Minimum principle for solving optimal control systems					
	CO5: Evaluate the solutions of constrained optimal control problems					

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	2	3	1	2	2
CO2	3	2	3	2	3
CO3	2	2	3	3	2
CO4	3	2	3	2	3
CO5	2	3	3	2	3

Semester	III	Course Code	24MATP0	3D4
Course Title	Fractal Analysis			
No. of. Credits	3	No. of. contact hours per week	3	
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		
Category	Discipline Centric Elective			
Scope of the Course	Advanced Skill			
Cognitive Levels addressed by the course	 Properties and problems of bo Understanding the Hausdorff dimension and Techniques for and examples of number theo. Applying the Densities-Struct Projections of arbitrary sets-P arbitrary sets of integral dimensions. Recognize the concepts of fractions. 	measure, Hausdorff dimension, or calculating dimensions, self-singry (K2). ure of 1-sets-Tangents to s-sets. rojections of s-sets of integral dispassion (K3).	Calculation nilar and sel Projections mension-Pr	of Hausdorff lf-affine sets, of fractals, ojections of
Course	The Course aims to introduce th	ne basic mathematical techniqu	es of fracta	al geometry for
Objective	diverse applications.	-		
Unit		Content		No. of. Hours
I	Mathematical background: Basic and mass distributions-Notes dimensions: Box-counting dimension-Modified definitions of dimension.	on probability theory. Box	x-counting s of box-	10
II	Hausdorff and packing measures a Hausdorff dimension- Calculation examples- Equivalent definitions of measures and dimensions-Finer deporosity. Techniques for calculating finite measure- Potential theoretics	of Hausdorff dimension—simpl of Hausdorff dimension- and pac efinitions of dimension-Dimensi ng dimensions: Basic methods- S	e king on prints- ubsets of	10
III	Local structure of fractals: Densi Projections of fractals: Projection integral dimension-Projections Products of fractals: Product form formulae for fractals-Sets with large	ties-Structure of 1-sets-Tangen ns of arbitrary sets-Projections of arbitrary sets of integral nulae. Intersections of fractals:	ts to s-sets. of s-sets of dimension.	10
IV	Iterated function systems—self-sin systems- Dimensions of self-similar	milar and self-affine sets: Iterate		9

	Applications to encoding images-Zeta functions and complex dimensions.				
	Examples from number theory: Distribution of digits of numbers- Continued				
	fractions- Diophantine approximation.				
	Graphs of functions: Dimensions of graphs- Autocorrelation of fractal				
	functions. Iteration of complex functions—Julia sets: General theory of Julia				
V	sets- Quadratic functions—the Mandelbrot set- Julia sets of quadratic	9			
•	functions- Characterization of quasi-circles by dimension- Newton's method				
	for solving polynomial equations. Random fractals: A random Cantor set-				
	Fractal percolation.				
	Text Book:				
	1. Kenneth J. Falconer, Fractal Geometry: Mathematical Foundations an	d Applications,			
	John Wiley and Sons Ltd, Third edition, 2014.				
	Unit 1: Chapter 1: Sections: 1.1 to 1.4, Chapter 2: Sections: 2.1 to 2.4.				
Defense	Unit 2: Chapter 3: Sections: 3.1 to 3.8, Chapter 4: Section: 4.1 to 4.4.				
References	Unit 3: Chapter 5: Sections: 5.1 to 5.3, Chapter 6: Sections: 6.1 to 6.3,				
	Chapter 7: Sections: 7.1, Chapter 8: Sections: 8.1 to 8.2.				
	Unit 4: Chapter 9: Sections: 9.1 to 9.6, Chapter 10: Sections: 10.1 to 10.3.				
	Unit 5: Chapter 11: Sections 11.1 to 11.2, Chapter 14: Sections: 14.1 to 14.5,				
	Chapter 15: Sections: 15.1 to 15.2.				
	Reference Books:				
	1. G. A. Edgar, Measure, Topology and Fractal Geometry , Springer – New Y	ork, 2008.			
	2. Kenneth J. Falconer, The Geometry of Fractals Sets , Cambridge U.				
	Cambridge, 1985.	,			
	3. Paul S. Addison, Fractals and Chaos: An Illustrated Course , Overseas Pres	s, 2005.			
	4. Michael F. Barnsley, Fractals Everywhere , Academic Press Professional, 1				
	E-Recourses:				
	On completion of the course students should be able to do				
	CO1: Outline the basic concepts of measure and box-counting dimension.				
Course	CO2: Identify the Hausdorff and packing measures and dimensions.				
Outcomes	CO3: Determine the product and intersection of fractals.				
	CO4: Explain the self-similar and self-affine sets, and examples of number the	ory.			
	CO5: Analyse the concepts of fractal and Julia sets.	Í			
	1 / 1 /				

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	2	2	2
CO2	1	3	2	3	3
CO3	3	3	1	3	2
CO4	2	3	3	3	3
CO5	3	2	1	3	3

Semester	II	Course Code	24MAT P	04D5		
Course Title	Coding Theory					
No. of. Credits	3	No. of. contact hours per week	3			
New Course/ Revised Course	If revised, Percentage of Revision effected (Minimum 20%)					
Category	Discipline Centric Elective					
Scope of the Course	Advanced Skill					
Cognitive Levels addressed by the course	 Describing the fundamentals of error detection, correction and decoding techniques in communication channels (K1 – Knowing) Estimate the various bounds for the linear codes and explain the Hamming codes, Golay codes (K2 – Understanding) Applying Syndrome decoding technique to decode linear codes (K3- Applying) Constructing BCH codes using generator polynomials, generating matrix and parity check matrix (K6-Create) 					
Course Objective	The Course aims to introduce the elements of coding theory and its applications					
Unit		No. of. Hours				
I	Error detection, correction and Maximum likelihood decodin neighbourhood minimum distance	10				
II	Linear codes: Linear codes – Self orthogonal codes – Self dual codes – Bases for linear codes – Generator matrix and parity check matrix – Enconding with a linear code – Decoding of linear codes – Syndrome decoding.					
III	Bounds in coding theory: The main coding theory problem – lower bounds – Sphere covering bound – Gilbert Varshamov bound – Binary Hamming codes – q-ary Hamming codes – Golay codes – Singleton bound and MDS codes – Plotkin bound.					
IV	Cyclic codes: Definitions – Gene parity check matrix – Decoding of	9				
V	Special cyclic codes: BCH codes BCH codes – Reed Solomon codes	9				
References	Text Book: 1. San Ling and Chaoping Xing , Coding Theory: A first course, Cambridge University Press, 2004. Unit 1: Sections 2.1, 2.2, 2.3, 2.4, 2.5 Unit 2: Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 Unit 3: Sections 5.1, 5.2, 5.3, 5.4, 5.5, Unit 4: Sections 7.1, 7.2, 7.3, 7.4 Unit 5: Sections 8.1, 8.2.					

	Reference Books: 1. S. Lin &D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, Inc., New Jersey, 1983. Vera Pless, Introduction to the Theory of Error Correcting Codes, Wiley, New York, 1982. 2. E. R Berlekamp, Algebriac Coding Theory, Mc Graw-Hill, 1968. 3. H. Hill, A First Course in Coding Theory, OUP, 1986. E-Recourses: https://nptel.ac.in/courses/117106031
Course Outcomes	On completion of the course students should be able to do CO1: Discuss the basic concepts of coding theory. CO2: Analyse the importance of finite fields in the design of codes. CO3: Predict and correct the errors occur in communication channels with the help of methods of coding theory. CO4: Apply the tools of linear algebra to construct special type of codes. CO5: Apply algebraic techniques in designing efficient and reliable data transmission methods.

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	3	1	3	2
CO2	3	3	3	1	3
CO3	3	3	3	2	2
CO4	3	3	3	2	1
CO5	3	3	1	3	2

Semester	III	Course Code	24MATP03M1			
Course Title	Field Theory					
No. of. Credits	2	No. of. contact hours per week	2			
New Course/		If revised, Percentage of				
Revised		Revision effected				
Course		(Minimum 20%)				
Category	Modular Course					
Scope of the Course	Advanced Skill					
Cognitive	Recognize some advances in fields and Galois theory (K1- Remember)					
Levels	Understand splitting fields and finite fields (K2 – Understanding)					
addressed by	 Describe the Galois groups and solvability of groups (K1- Remember) 					
the course						

Course Objective	The course aims to introduce the elements of extension fields, finite fields and Galois theory				
Unit	Content	No. of. Hours			
I	Extension fields – Algebraic extensions - Roots of polynomials – Remainder theorem – Splitting fields - More about roots – Simple extension - Finite fields.	16			
II	The elements of Galois theory – Galois group – Theorem on Symmetric polynomials – Normal Extension – Fundamental theorem of Galois theory - Solvability by radicals – Solvability of groups -Abel's theorem - Galois group over the rationals.	16			
References	 Text Book: N. Herstein, Topics in Algebra, 2nd edition, John Wiley & Sons, Singapore, 2006. Unit 1: Chapter 5: Sections 5.1, 5.3, 5.5 & Chapter 7: Section 7.1 Unit 2: Chapter 5: Sections 5.6, 5.7, 5.8. Reference Books: John. B. Fraleigh, A First Course in Abstract Algebra, 7th Edition, Addison-Wesley, New Delhi, 2003. Steven Roman, Field Theory, Springer, New York, 1995. John M. Howie, Fields and Galois Theory, Springer Verlag, London, 2006. P. B. Bhattacharya, S. K. Jain & S. R. Nagpaul, Basic Abstract Algebra, Cambridge University Press, USA, 1986. D. S. Dummit & R. M. Foote, Abstract Algebra, John Wiley, New York, 1999. 				
Course Outcomes	E-Recourses: https://nptel.ac.in/courses/111106145 On completion of the course students should be able to CO1: understand the extension fields and related results CO2: explain the Galois groups and solvability by radicals CO3: classify the finite fields				

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	1	3	2	2	3
CO2	2	1	3	1	2
CO3	2	2	2	3	1

Semester	III	Course Code	24MATP03M2
Course Title	Wavelet Analysis		
No. of. Credits	3	No. of. contact hours per week	3
New Course/		If revised, Percentage of	
Revised		Revision effected	
Course		(Minimum 20%)	

Category	Modular Course				
Scope of the Course	Advanced Skill				
Cognitive Levels addressed by the course	 K-1. Knowing the basic concepts of Wavelets, Approximation and the Perception of Reality, Information Gained from Measurement, Functions and their Representations, Multi-resolution Representation, Positional Notation for Numbers, Music Notation as a Metaphor for Wavelet Series, Wavelet Phase Space. K-2. Identifying the Algebra and Geometry of Wavelet Matrices, Wavelet Matrices-Haar Wavelet Matrices, The Algebraic and Geometric structure of the Space of Wavelet Matrices. K-3. Classifying One-Dimensional Wavelet Systems such as the Scaling Equation and Wavelet Systems. Investigating Multi-wavelets and Lifting. K-4. Realizing the Examples of One-Dimensional Wavelet Systems with Universal Scaling Functions K-5. Recognizing the concepts of Higher-Dimensional Wavelet Systems and Understanding Compression. 				
Course Objective	The Course aims to impart skills in the various applications of wavelet analysi	S.			
Unit	Content	No. of. Hours			
I	The New Mathematical Engineering: Introduction-Trial and Error in the Twenty-First Century-Active Mathematics-The Three types of Bandwidth-Good Approximations: Approximation and the Perception of Reality-Information Gained from Measurement-Functions and their Representations-Wavelets: A Positional Notation for Functions: Multiresolution Representation-The Democratization of Arithmetic: Positional Notation for Numbers-Music Notation as a Metaphor for Wavelet Series-Wavelet Phase Space.	16			
II	Algebra and Geometry of Wavelet Matrices: Introduction-Wavelet Matrices-Haar Wavelet Matrices-The Algebraic and Geometric structure of the Space of Wavelet Matrices- Wavelet Matrix Series and Discrete Orthonormal Expansions- One-Dimensional Wavelet Systems: Introduction-The Scaling Equation-Wavelet Systems-Recent Developments: Multiwavelets and Lifting.	16			
References	Text Book: 1. Howard L. Resnikoff Raymond & O. Wells, Jr., Wavelet Analysis- The Scalable Structure of Information, Springer, New Delhi, 2004. Unit 1: Chapter 1: Sections: 1.1 to 1.4, Chapter 2: Sections: 2.1 to 2.3, Chapter 3: Sections 3.1 to 3.4. Unit 2:.Chapter 2: Sections: 4.1 to 4.5. Unit 3: Chapter 5: Sections: 5.1 to 5.4. Unit 4: Chapter 6: Sections: 6.1 to 6.6. Unit 5: Chapter 7: Sections 7.1 to 7.4, Chapter 13: Sections: 13.1 to 13.7.				

	Reference Books:				
	1. L. Prasad & S.S. Iyengar, Wavelet Analysis with Applications to Image				
	Processing, CRC Press, New York, 1997.				
	2. Geroge Buchman, Lawrence Narichi, & Edward Beckenstein, Fourier and Wavelet				
	Analysis, Springer-Verlag, New York, Inc-2000.				
	E-Recourses: https://web.iitd.ac.in/~sumeet/WaveletTutorial.pdf				
	On completion of the course students should be able to do				
	CO1: Describe the basic concepts of Wavelets				
Course	CO2: Identify the Algebra and Geometry of Wavelet Matrices				
Outcomes	CO3: Classify One-Dimensional Wavelet Systems				
	CO4: Determine the solutions of One-Dimensional Wavelet Systems				
	CO5: Analyze the concepts of Higher-Dimensional Wavelet Systems				

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	2	3	2	3	1
CO2	1	3	3	1	3
CO3	3	2	1	3	3
CO4	2	1	2	2	3
CO5	2	3	2	3	2

Semester	IV Course Code		24MATP04M3			
Course Title	Introduction to SciLab					
No. of. Credits	3	No. of. contact hours per week	3			
New Course/		If revised, Percentage of				
Revised	New Course	Revision effected				
Course						
Category	Modular Course					
Scope of the Course	Skill Development	Skill Development				
Cognitive	• Remembering basic tools on S	ciLab(K-1)				
Levels	Creating real variables, compl	ex numbers and matrices (K-6)				
addressed by	Computing matrix operations (K-5)					
the course	Creating 2D graphs using functions (K-6)					
Course	The Course sime to make an even	The Course aims to make an overview of Scilab features.				
Objective	The Course aims to make an overv	riew of Schab leatures.				

Unit	Content	No. of. Hours			
I	Overview of Scilab- How to get started with Scilab - Getting help from Scilab demonstrations and macros - The Console - The Editor - Batch Processing- Creating Real Variables - Elementary mathematical functions - Booleans - Complex Numbers - Integers - Floating Points - Strings - Dynamic Variables- Matrices - Create Matrices of Real Variables - Accessing Elements of Matrices- Matrices are dynamic - Elementwise Operations- Conjugate transpose and non-conjugate transpose - Multiplication of two vectors Comparing two real matrices - Issues with floating point integers - More on elementary functions - Higher-level linear algebra features	16			
II	Looping and branching: The if, select, for and while break and continue statements- Functions - Defining functions - Function libraries - Managing output arguments- Levels in the call stack - The return statement - Debugging functions with pause - Plotting - 2D plot - Contour plots - Titles, axes and legends - Export.	16			
References	Text Book:				
	1. Michael Baudin, Introduction to Scilab , The Scilab Consortium, Digiteo	, 2010.			
	 Reference Books: Stephen L. Campbell, Jean-Philippe Chancelier, Ramine Nikoukhah, Modeling and Simulation in Scilab/Scicos with Scicos Lab 4.4, Springer-Verlag New York, 2006. Eike Rietsch, An Introduction to Scilab from a Matlab User's Point of View, INRIA, France, 2010. 				
	E-Recourses:				
	1. http://www.openeering.com/scilab_tutorials				
Course Outcomes	On completion of the course students should be able to CO1: perform arithmetic operations on real numbers, complex numbers and matrices CO2: solve system of linear equations CO3: construct loop and functions for iterative problems				
	CO4: apply SciLab tools in numerical simulations of mathematical modelling CO5: plot graph of functions				

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	3	3	3
CO2	3	2	2	3	2
CO3	3	1	3	2	1
CO4	2	3	2	2	3
CO5	3	1	2	3	2

Semester	IV	Course Code	24MATP()4M4		
Course Title	Neural Networks					
No. of. Credits	3	No. of. contact hours per week		3		
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)				
Category	Modular Course		•			
Scope of the Course	Advanced Skill					
Cognitive Levels addressed by the course Course	 Know the concept of Neural Network and its various types, Functioning of artificial neural network and Neuron modelling. Understand the concept of Dynamic Neural Units, Models, and circuits of isolated DNUs. The Course aims to introduce the main fundamental principles and techniques of neural 					
Objective	network systems and investigate the principal neural network models and applications.					
Unit		No. of. Hours				
I	Architectures: Introduction to Neural Network-Applications of neural network-Biological neural networks-Artificial neural networks-Functioning of artificial neural network-Neuron modelling.					
II	Dynamic Neural Units (DNUs): Nonlinear models and dynamics-Models of dynamic neural units-Models and circuits of isolated DNUs-Neuron with excitatory and inhibitory dynamics.					
References	 Text Book: A. Anto Spiritus Kingsly, Neural network and fuzzy logic control, Anuradha Publications, Chennai, 2009. Madan M. Gupta, Liang Jin & Noriyasu Homma, Static and dynamic neural networks, A John Wiley and sons, INC., Publication, 2003.					
	Reference Book: 1. James A. Anderson, An Introduction to Neural Networks, The MIT Press, Cambridge 1995 E-Recourses: https://www.cs.jhu.edu/~phi/ai/slides-2019/lecture-neural-networks.pdf					
	On completion of the course stude	±	ieurai-netW	orks.par		
Course	CO1: Explain various types of neu		ntions			
Outcomes	CO2: Design nonlinear models and	-				
	_	nd its applications in information	n theory			

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	2	3	1	2	2
CO2	3	2	1	2	3
CO3	2	3	1	2	2

Semester	II	Course Code	241	MATPO2VA1		
Course Title	Numerical Methods For Engineers					
No. of. Credits	No. of. contact hours per week			2		
New Course/ Revised Course	New Course					
Category	Valued Added Course					
Scope of the Course	Skill Developme:	nt				
Cognitive Levels addressed by the course	 Remembering the basic rules of finding the square and square root of numbers (K-1) Understanding the Vedic Sutras and apply them to find Square and square root of numbers. (K-2 & K-3) Remembering the basic rules of finding the cube and cubic root of numbers (K-1) Understanding the Vedic Sutras and apply them to find Cube and Cubic root of numbers. (K-2 & K-3) 					
Course Objective	The Course aims to i	mpart skills on solving numerica	ıl problems.			
Unit		Content		No. of. Hours		
I	Introduction & Approximation Accuracy and precision Number System- Error production - Matrix representation- Inversion- LU Decompromple Iterative Methods- Relax	16				
II	Iterative Methods- Relaxation Methods- Eigen Values. Algebraic Equations: Bracketing Methods -Introduction to Algebraic Equations-Bracketing methods: Bisection, Reguli-Falsi-Algebraic Equations: Open Methods Secant- Fixed point iteration-Newton-Raphson- Multivariate Newton's method-Numerical Differentiation-Numerical differentiation- error analysis- higher order formulae - Integration and Integral Equations Trapezoidal rules-Simpson's rules- Quadrature.					

	Text Book: 1. S. K. Gupta, Numerical Methods for Engineers, New Age International, 1995		
D. C	Reference Book:		
References	1. S.C. Chapra and R. P. Canale, Numerical Methods for Engineers, 5th Ed.,		
	McGraw Hill, 2006.		
	E- Resources:		
	1. https://nptel.ac.in/courses/127/106/127106019/		
	On completion of the course students should be able to		
Course Outcomes	CO1: solve system of equations using various methods		
	CO2: solve algebraic equations using various methods		
	CO3: compute differentiation and integration approximately.		

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	2	2	1	2	3
CO2	1	1	2	3	2
CO3	2	2	1	2	3

Semester	II	24MATP02VA2			
Course Title	Mathematics For Competitive Examinations				
No. of. Credits	2	No. of. contact hours per week	2		
New Course/ Revised Course	New Course	If revised, Percentage of Revision effected (Minimum 20%)			
Category	Valued Added Course				
Scope of the Course	Skill Development				
Cognitive Levels addressed by the course	 Remembering the basic rules of number system and fractions and apply them to solve simplification problems (K-1 & K-3) Understanding the Polynomials, quadradic equations, sequence and series and apply them to solve problems in competitive exams. (K-2 & K-3) Analyse profit /loss in a particular investment (K-4) Understanding the Vedic Sutras and apply them to find Cube and Cubic root of numbers. (K-2 & K-3) 				
Course Objective	The Course aims to impart skills on solving numerical problems.				

Unit	Content	No. of. Hours				
	Number system-Fraction-Simplification- Approximate values-					
I	Inequalities-Polynomials-Quadradic equations-Sequence and	16				
	Series.					
	Average-Ratio and Proportions-Problems related to ages-					
II	Percentage-Profit and Loss-Partnership-Simple interest and	16				
	Compound interest-Time and Work					
	Text Book:					
	1. Gautam Puri, Quantitative Aptitude for Competitive Examinations , G K					
_	Publications Pvt Ltd, Noida, 2017.					
References	Reference Book:					
	1. R.S. Agarwal, Quantitative Aptitude , Revised and Enlarged Edition, S.					
	Chand & Company Ltd., New Delhi, 2017.					
	On completion of the course students should be able to					
	CO1: solve problems related to number systems, fractions, inequalities and sequence and					
Course Outcomes	series.					
	CO2: solve problems related to ratio and proportions, ages and percentage	•				
	CO3: Solve problems related to simple interest and compound interest and time and					
	work.					

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	2	1	1	2	3
CO2	1	2	2	1	2
CO3	1	2	1	2	3

Semester	II	Course Code	24MATP02VA3		
Course Title	Fuzzy Logic For Management Decision Making				
No. of. Credits	2	No. of. contact hours per week	2		
New Course/ Revised Course	New Course	If revised, Percentage of Revision effected (Minimum 20%)			
Category	Value Added Course				
Scope of the Course	Basic Skill				

Cognitive Levels addressed by the course	 Understanding various definitions of fuzzy sets, membership functions and identify. basic standard operations such as complement, union, intersection, composition, and other operations in Fuzzy Set theory(K-1). Applying fuzzy concepts to solve real life problems and using fuzzy relations to create fuzzy Graphs(K-3). Deriving the characteristics and classifying the fuzzy relation(K-4). 					
Course Objective	• Describe the fuzzy logic and connectives, interface, propositions and quantifiers, the decision making, fuzzy ranking method, fuzzy linear programming problems.					
Unit	Content	No. of. Hours				
I	Fuzzy Logic: Fuzzy Logic and Fuzzy Propositions, Fuzzy Connectives, Fuzzy Interface, Fuzzy Propositions, Fuzzy Quantifiers.	16				
II	Decision Making in Fuzzy Environment: Introduction, Individual Decision Making, Multiperson Decision Making, Multicriteria Decision Making, Fuzzy Ranking Method, Fuzzy Linear Programming.	16				
References	 Text Book: Sudhir K. Pundir, Rimple Pundir, Fuzzy Sets and Their Applications, 8th Edition, Pragati Prakashan Educational Publishers, Meerut, 2016, Unit I: Chapter 7: Sections: 7.13-7.17 Unit II: Chapter 10: Sections: 10.1-10.6 Reference Books: Kwang H. Lee, First Course on Fuzzy Theory and Applications, Springer, New York, 2005. G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice-Hall India, 1995. 					
Course At the end of the course learner will be able to						
Outcomes	CO1: Recognize the Concept of Fuzzy Sets and its Properties. CO2: Compute Decision Making in Fuzzy Environment Problems.					

PO	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	1	3
CO2	1	2	3	1	1