THE GANDHIGRAM RURAL INSTITUTE (DEEMED TO BE UNIVERSITY) GANDHIGRAM - 624302 (Ministry of Education, Govt. of India)

Accredited by NAAC with 'A' Grade (3rd cycle)

Department of Mathematics

B.Sc. Honour Degree (Mathematics) Pre-Requisite: Mathematics as a subject of study at the Higher Secondary level. <u>Revised Syllabus with effect from 2024 – 2025 onwards</u>

CURRICULUM WITH OUTCOME BASED EDUCATION (OBE)

Name of	the School	:	School of Sciences
Departme	ent	:	Department of Mathematics
Academi	c Programme offered	:	B.Sc. (Hons.) Mathematics,
			B.Sc. B.Ed. (4 year integrated) Mathematics, M.Sc. Mathematics and Ph.D. Mathematics
I.	VISION	:	
			 Science & Technology Enabled Rural Development through teaching and research in Mathematical Sciences
II.	MISSION	:	
			Proficiency in research and teaching
			 Research studies in International standards and to urge the need for practical significance
III.	PROGRMME CODE	:	MAU
IV.	PROGRAMME	:	B. Sc. (Hons.) Mathematics / B.Sc. B.Ed. (4 year integrated) Mathematics
V.	PROGRAMME E	EDUCATIO	ONAL OBJECTIVES (PEO) OF B.SC.

MATHEMATICS:

PEO 1: Demonstrate proficiency in mathematics and allied fields by exhibiting the required knowledge of the mathematical concepts so as to secure appropriate placement and studies.

- PEO 2: To develop further career through learning research and extension.
- PEO 3: To demonstrate the needed skills for analysis, data interpretation and methodologies as appropriate to the domain of maths.

- PEO 4: To address the needs of society by applying the knowledge and leadership so as to seek solutions for society / industry.
- PEO 5: Select higher studies in Mathematics and other inter-disciplinary programmes and enable to get employed in private and public sectors
- VI. GRADUATE ATTRIBUTES GA1: Reasoning Ability GA2: Analytical Ability GA3: Communication Skill GA4: Computational Skill
- VII. PROGRAMME OUTCOMES (PO)
 - PO1: Have the potential to face all competitive exams in public and private sectors.
 - PO2: Possess the ability to do higher studies in premier institutions
 - PO3: Posses the computational skills to solve related problems in science and engineering
 - PO4: Have the ability to develop mathematical models related to real life situations
 - PO5: Identifying and solving problems arising in social science, business and banking based on quantitative techniques.

PROGRAMME SPECIFIC OUTCOMES (PSO)

- PSO1: Acquire skills in basic concepts of algebra, real and complex analysis, number theory, Optimization theory
- PSO2: Become proficient in differential and integral calculus and familiar with applications of ODE & PDE.
- PSO3: Gain knowledge in 2D and 3D geometrical objects using various metrics and solving mechanical and physical problems through geometrical and graphical way.
- PSO4: Analyze numerical and statistical data of population dynamics of real life situations
- PSO5: Proficient in soft skills and Computing skills for solving complex mathematical problems.

Name of the Programme]	3.Sc. Math	nematics			
Year of Introduction					197	6			
Year of Revision					202	4			
Semester-wise Courses and Credit distribution	Ι	II	III	IV	V	VI	VII	VIII	Total
No. of Courses	7	8	7	6	6	6	5	3	48
No. of Credits	21	23	23	21	20	24	20	20	172

Category	Course	Course Title	Number	Lecture Hours per	Exam		Marks	
	Code		Credits	week	(Hrs.)	C.F.A	E.S.E	Total
	•	Semeste	er-I					
Core Major-1	24MAUC1101	Classical Algebra	4	4	3	40	60	100
Core Minor-1	24MAUB1101	Programming with Python (Theory)	3	3	3	40	60	100
Core Minor-1 Lab	24MAUB1102	Programming with Python (Practical)	1	2	3	60	40	100
Multi disciplinary		Multidisciplinary-I	3	3	3	40	60	100
Ability Enhancement course (AEC)	24ENUA1101	Essential English: Basic	3	3	3	40	60	100
Skill Enhancement Course	24TAUS1101/ 24MLUS1101/ 24HIUS1101	Indian Language (Tamil/Malayalam/Hindi)-I	3	3	3	40	60	100
Value Added Course	24FSUV1001	Environmental Science	2	2	2	50	_	50
Value Added Course	24FAUV1001/ 24GTUV1002	Heritage & Cultural History of India (or) Shanthi Sena	2	2	2	50	-	50
	TOT	TAL	21					

Semester-II										
Core Major-2	24MAUC1202	Theory of Equations and Trigonometry	4	4	3	40	60	100		
Core Minor-2	24MAUB1206	Object Oriented Programming with C++ (Theory)	3	3	3	40	60	100		

w.e.f. 2024-2025

Core Minor-2		Object Oriented						
Lab	24MAUB1207	Programming with C++	1	2	3	60	40	100
Lau		(Practical)						
Multi		Multidiaciplipary II	2	2	2	40	60	100
disciplinary		Wulldiscipillary-II	5	5	5	40	00	100
Ability		Econtial English						
Enhancement	24ENUA1202		3	3	3	40	60	100
course (AEC)		Intermediate						
Skill	24TAUS1202/	In the Tan man						
Enhancement	24MLUS1202/	(Transil/Mala alam (IIim li) II	3	3	3	40	60	100
Course	24HIUS1202	(1amii/Malayalam/Hindi)-II						
Value Added	24DELU/1001	Vara & Ettra and	n	2	n	50		FO
Course	24PEU V 1001	roga & Fitness	2	2	2	50	-	50
Value Added		Lature Vracus Candhi	n	n	n	50		50
Course	24G10V1001	Let us Know Gandin	2	2	2	50	_	50
Skill	24TAUS0004/							
Enhancement	24MLUS0004/	Functional Lamil/	2	2	2	50	-	50
Course	24HIUS0004	Ivialayalam/Hindi						
	TOT	ΓAL	23					

		Semester	r-III					
Core Major-3	24MAUC2103	Calculus - I	4	4	3	40	60	100
Core Major-4	24MAUC2104	Mathematical Statistics	4	4	3	40	60	100
Core Minor-3	24PHUB2101 (or) 24MAUB2111	Physics – I (or) Programming with JAVA (Theory)	3	3	3	40	60	100
Core Minor-3	24PHUB2102	Physics – I (or)	1	3	3	60	40	100
Lab	(or) 24MAUB2112	Programming with JAVA (Practical)	1	2	3	60	40	100
Multi disciplinary		Multidisciplinary-III (Online Course)	3	3	3	40	60	100
Ability Enhancement course (AEC)	24ENUA2103	Essential English: Advanced	3	3	3	40	60	100
Skill Enhancement Course	24TAUS2103/ 24MLUS2103/ 24HIUS2103	Indian Language (Tamil/Malayalam/Hindi)-III	3	3	3	40	60	100
Extension	24EXUE2101	Village Placement Programme	2	2	2	50	-	50
	TOTAL							

		Semester	r-IV					
Core Major-5	24MAUC2205	Abstract Algebra	4	4	3	40	60	100
Core Major-6	24MAUC2206	Calculus-II	4	4	3	40	60	100
Core Major-7	24MAUC2207	Sequences and Series	4	4	3	40	60	100
Core Minor-4	24PHUB2203 (or) 24MAUB2213	Physics II (or) Statistical Methods (Theory)	3	3	3	40	60	100
Core Minor-4 Lab	24PHUB2204 (or) 24MAUB2214	Physics II (or) Statistical Methods (Practical)	1	2	3	40	60	100
Ability Enhancement course (AEC)	24MAUA220X	AEC	3	3	3	40	60	100
Extension	24EXUE2202	Community Engagement	2	2	2	50	-	50
	TOT	21						

	Semester-V										
Core Major-8	24MAUC3108	Linear Algebra	4	4	3	40	60	100			
Core Major-9	24MAUC3109	Mathematical Analysis	4	4	3	40	60	100			
Core Major-10	24MAUC3110	Linear Programming	4	4	3	40	60	100			
Core Minor-5	24MAUB3115	Ordinary Differential Equations	4	4	3	40	60	100			
Core Major-11	24MAUC3111	Internship	2	2	2	50	-	50			
	24MAUE3101	Field Study	2	2	2	50	-	50			
	TOT	20									

Semester-VI										
Core Major-12	24MAUC3212	Complex Analysis	4	4	3	40	60	100		
Core Major-13	24MAUC3213	Graph Theory	4	4	3	40	60	100		
Core Major-14	24MAUC3214	Mechanics	4	4	3	40	60	100		
Core Major-15	24MAUC3215	Numerical Methods	4	4	3	40	60	100		
Core Minor-6	24MAUB3216	Transforms and Partial Differential Equations	4	4	3	40	60	100		
Corre Maiore 16		Project (or)	4	4	3	40	40+20	100		
Core Major-16	24MAUC3210	Operations Research	4	4	3	40	60	100		
	TOT	AL	24							

	Semester-VII									
Core Major-17	24MAUC4117	Advanced Algebra	4	4	3	40	60	100		
Core Major-18	24MAUC4118	Real Analysis	4	4	3	40	60	100		
Core Major-19	24MAUC4119	Advanced Ordinary Differential Equations	4	4	3	40	60	100		
Core Minor-7	24MAUB4117	Numerical Analysis	4	4	3	40	60	100		
Core Minor-8	24MAUB4118	Discrete Mathematics	4	4	3	40	60	100		
	TOT	20								

	Semester-VIII									
Core Major-20	24MAUC4220	Partial Differential Equations and Applications	4	4	3	40	60	100		
Core Major-21	24MAUC4221	Mathematical Methods	4	4	3	40	60	100		
Core Major-22	24MAUC4222	Project	12	12	3	100	100+ 100	300		
	TOTAL 20									

LIST OF ABILITY ENHANCEMENT COURSES:

- 1. Analytical Geometry (24MAUA2201)
- 2. Basic Numerical Methods (24MAUA2202)

Semester	Ι	Course Code	24MAUC	101		
Course Title	CLASSICAL ALGEBRA					
No. of. Credits	4	No. of. contact hours per week		4		
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)				
Category	Core Course (Major-1)	Core Course (Major-1)				
Scope of the Course	Basic Skill					
Cognitive Levels addressed by the course	 Knowing matrices Understanding fur Applying number problems. (K-3) Analyzing cardina Evaluating eigenvalue 	, relations, and sets. (K-1) actions and inequalities (K-2). r theory concepts and Congr lity of sets (K-4) alues and eigenvectors of matrice	ruence rela es (K-5)	tions to solve		
Course Objective	The course aims to impar number theory.	The course aims to impart fundamental knowledge in sets theory, matri number theory.				
Unit		Content		No. of. Hours		
Ι	Basic terminologies – O _I sets – Cartesian product o	perations on sets – Family of set of sets.	rs – Power	13		
II	Basic definitions: one- Composition of functions subsets under function functions.	one, onto functions and bij s – Inverse of a function – ns – Inverse image of subse	ections – Image of ets under	13		
III	Relation on sets – Type Equivalence classes and principle – Sets with sam – Comparing cardinality.	es of relations – Equivalence r d partitions of a set – The ne cardinality – Finite sets – Cour	relations – induction ntable sets	13		
IV	Types of matrices- Op Solution of simultane Homogeneous and Nor values and Eigen vector theorem.	perations on Matrices- Inverseous equations- Rank of a n-homogeneous linear equation ors - Diagonalization- Cayley	se Matrix matrix- ns- Eigen -Hamilton	12		
V	Prime Numbers and C Divisibility and Congr Wilson's theorem.	omposite Numbers - Euler's f uence relations - Fermat's t	function - heorem -	13		

	Text Books:
	1. Ajit Kumar, S. Kumaresan, & Bhaba Kumar Sarma, A Foundation Course in
	Mathematics, Narosa Publishers, New Delhi, 2018.
	Unit 1: Chapter 2
	Unit 2: Chapter 3
	Unit 3: Chapter 4, Chapter 5 (sec 5.1), and Chapter 6.
	2. T. K. Manicavachagom Pillay, T. Natarajan, K. S. Ganapathy, Algebra, Vol. 2.
	S. Viswanathan Publications (India) Pvt. Ltd., Chennai, 2012.
	Unit 4: Chapter 2
	Unit 5: Chapter 5
	onit 5. Ghupter 5.
	Reference Books:
	1. A Shen and NK Vereshchagin, Basic Set Theory , AMS Students
	Mathematical Library, USA, 2002.
	2. Paul R. Halmos, Naive Set Theory, Springer, New York, 1974.
	3. David M. Burton, Elementary Number Theory , 7th Edition, McGraw Hill,
References	New Delhi, 2012.
	4. S. Arumugam & A. T. Isaac, Modern Algebra, SciTech Publications, India
	Pvt. Ltd., Chennai, 2003.
	5. S. Naravanan & T. K. Manicavachagom Pillav, Modern Algebra, Vol-I, S.
	Viswanathan Pvt. Ltd., Chennai, 1997.
	6. Sevmour Lipschutz, Set Theory & Related Topics, Schaum's outlines, 2nd
	Edition. Tata McGraw Hill. New Delhi. 2005.
	7. Arumugam & Issac. Classical Algebra . New gamma Publishing house.
	Tirunelveli, 2003.
	8. S.B. Malik, Basic Number Theory , 2 nd Edition, Vikas Publishing House Pyt.
	Ltd., New Delhi, 2009.
	E-Recourses:
	1. http://nptel.ac.in/courses/109104124/
	2. https://nptel.ac.in/courses/111/106/111106142/
	3. https://nptel.ac.in/courses/111/105/111105112/
	4. www.maths.manchester.ac.uk/~avb/0n1 pdf/0N1 All.pdf
	5. https://4dspace.mtts.org.in/expository-articles-list.php
	On completion of the course students should be able to
	CO1: explain the basic concepts of set theory.
	CO2: analyze various types of functions.
Course Outcomes	CO3: identify equivalence relations and cardinality of sets.
	CO4: solve problems in matrices.
	CO5: explain basic concepts of number theory.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	1	2	3	2
CO2	3	2	2	2	3
CO3	3	3	2	3	2
CO4	3	1	2	2	2
CO5	3	3	2	2	3

Semester	Ι	Course Code	24MAUB	1101
Course Title	PROGRAMMING WITH PYTHON (THEORY)			
No. of. Credits	3	No. of. contact hours per week		3
New Course/ Revised Course	Revised Course	If revised, Percentage of Revision effected (Minimum 20%)		40%
Category	Core Course (Minor-1) –	Theory		
Scope of the Course	EmployabilitySkill Developmen	t		
Cognitive Levels addressed by the course	 Remembering the basic tokens of Python (K1) Understanding the basic control structures (K2) Applying functions to compute mathematical results (K3 & K4) Applying the OOPs concept to solve mathematical problems (K4) 			
Course Objective	The course aims to provide basic knowledge in programming with Python.			
Unit	Content No. c			No. of. Hours
Ι	Python: Identifiers – Keywords – Statements and Expressions - Variables – Operators – Precedence and Associativity – Data Types – Indentation – Comments – Reading Input and Output – Type Conversions			12
II	Control Flow Statements: The if decision flow statement – The ifelse decision flow statement – The ifelse decision flow statement – Nested if statement – while loop – for loop – the continue and break statement – catching exceptions using try and except statement.			12
III	Functions: Build in functions – commonly used modules –functiondefinition and calling the function – the return statement and voidfunction – scope and lifetime of variables – default parameter –keyword arguments – *args and **kwargs-command linearguments.			8
IV	Object-Oriented Progra Classes in Python- Crea Method.	8		

	Object-Oriented Programming (continuation): Classes with					
V	Multiple Objects- Class Attributes versus Data Attributes 8					
	Encapsulation- Inheritance- The Polymorphism.					
	Text Book:					
	1. S. Gowrishankar and A. Veena, Introduction to Python Programming, CRC					
	Press, 2019.					
	Unit 1: Chapter 2					
	Unit 2: Chapter 3					
	Unit 3: Chapter 5.					
	Unit 4: Chapter 11 (Section 11.1-11.4)					
Deferences	Unit 5: Chapter 11 (Section 11.5-11.9)					
References	Reference Books:					
	1. E. Balagurusamy, Problem Solving and Python Programming, McGraw Hill					
	Education (India) Private Limited, 2018.					
	2. Tony Gaddis, Starting Out with Python, 4th Edition, Pearson, New York,					
	2018.					
	E-Recourses:					
	1. <u>https://nptel.ac.in/courses/106/106/106106212/</u>					
	2. <u>https://nptel.ac.in/noc/courses/noc21/SEM1/noc21-cs21/</u>					
	On completion of the course students should be able to					
	CO1: understand the basic structure of python programming.					
Course Outcomes	CO2: process data input output using Python.					
Course Outcomes	CO3: debug the Python program.					
	CO4: solve decision making problems.					
	CO5: write Python programs to solve complex problems.					

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	1	2	2	3
CO2	3	2	2	2	3
CO3	3	2	3	1	1
CO4	2	3	1	2	2
CO5	3	1	3	2	3

Semester	Ι	Course Code	24MAUB1102
Course Title	PROGRAMMING WITH	I PYTHON (PRACTICAL)	

No. of. Credits	1	No. of. contact hours per week		2		
Category Core Course (Minor-1) – Practical						
	List of Pract	ical		No. of. Hours		
	1. Python program to	read the marks of five subjects	s and find			
	the average of them					
	2. Python program to	read the Richter magnitude v	alue from			
	the user and display	the result using ifelifelse sta	tement.			
	3. Python program to	print the sum of the series.				
	4. Python program to	find the largest of three num	bers using			
	functions.					
	5. Python program us	ing functions to find the value o	of nPr and			
	nCr.					
	6. Python program u					
	pentagon.					
	7. Python program usi					
	8. Python program using functions to print harmonic					
	progression series a					
	9. Python program to					
	for deposit money, withdraw money and show balance					
	operations using cla	SS.				
	10. Python program to	verify whether the given three	points are	32		
	colinear or not usin	g class.				
	11. Python program to	determine whether the point	lies inside			
	the circle, on the ci	rcle or outside the circle using cl	ass.			
	12. Python program to calculate area and perimeter of					
	different shapes usi					
	13. Python program to					
	14. Python program to					
	students using inhe	ritance.				
	15. Program to demon	strate multiple inheritance wit	h method			
	overriding.					

Semester	II	Course Code	24MAUC1202
Course Title	THEORY OF EQUATION	ONS AND TRIGONOMETRY	

No. of. Credits	4	No. of. contact hours per week	4			
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)				
Category	Core Course (Major-2)	· · · · ·				
Scope of the Course	Basic Skill					
Cognitive Levels addressed by the course Course Objective	 Knowing the basic concepts of roots of equations. (K-1) Understanding the various transformation of equations. (K-2) Applying different methods to analyse the nature of roots of the equation. (K-3) Evaluating the values of trigonometric functions. (K-5) Analysing the Hyperbolic functions, Inverse hyperbolic functions, and Logarithm of complex quantities. (K-4) 					
		in teeninques of solving argeorate and	t trigonometrie equations.			
Unit		Content	No. of. Hours			
I	Theory of Equations: F Theorem of Algebra - I – Sum of the powers of	nts 13				
II	Transformation of equa Nature and position of Sturm's Theorem-Cubi	nts- m 13				
III	Biquadratic equations: solutions of numerical Method.	s 12				
IV	Trigonometry: Expansi of sines and cosines of $sin \theta$ and $cos \theta$ - Prope	ers 13				
V	Hyperbolic functions - of Complex Quantities.	hm 13				
References	Text Books: 1. Arumugam & Issa Gamma Publishin Unit 1: Chap Unit 2: Chap	ac, Set Theory Number System and Tl ag House, Palayamkottai, 1999. ter -5, Section 5.1-5.4 ter -5, Section 5.5-5.8	neory of Equations, New			

	Unit 3: Chapter -5, Section 5.9-5.10		
	2. S. Narayanan & T. K. Manicavachagom Pillay, Trigonometry , S. Viswanathan		
	(Printers & Publishers) Pvt. Ltd., Chennai, 2001.		
	Unit 4: Chapter III, Sections 1, 2, 4, 5.		
	Unit 5: Chapter IV, Sections 1, 2 (2.1, 2.2, 2.3) & Chapter V, Section 5 (Only).		
	Reference Book:		
	1. Hari Kishan, Theory of Equations, Atlantic Publishers and Distributors, 2022.		
	2. William Snow Burnside, Arthur William Panton, The Theory of Equations, Wave		
	Books, 2022.		
	E-Recourses:		
	1. <u>https://www.youtube.com/watch?v=V4fCrkWJ8tc</u>		
	2. <u>https://www.youtube.com/playlist?list=PLOnJQiDsowoiyJH7qgTXkLjeVOzlVvumh</u>		
	3. <u>https://cosmolearning.org/courses/trigonometry-complex-numbers/</u>		
	On completion of the course students should be able to		
	CO1: utilize basic concepts of roots and coefficients of equation to solve algebraic		
	consticutions		
Course Outcomes	equations.		
Course Outcomes	CO2: solve various problems in transformation of equations.		
	CO3: apply Newton's and Horner's method to solve various equations.		
	CO4: assess trigonometric functions and related problems.		
	CO5: identify various types of hyperbolic functions.		

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	1	2	3
CO2	3	1	3	2	3
CO3	3	2	2	3	2
CO4	3	2	3	2	2
CO5	3	2	1	3	2

Semester	II	Course Code	24MAUB1206

Course Title	OBJECT ORIENTED PROGRAMMING WITH C++ (THEORY)			
No. of. Credits	3	No. of. contact hours per week		3
New Course/ Revised Course	Revised	If revised, Percentage of Revision effected (Minimum 20%)		20%
Category	Core Course (Minor-3) –	Theory		
Scope of the Course	• Basic Skill			
Cognitive Levels addressed by the course	 Identify basic input/output, tokens, operators, and functions through C++. Create objects and classes. Constructing relationships between classes and objects. Use function templates and class templates in a program. Design Object Oriented Programs using class, inheritance diagrams. 			
Course Objective	The Course aims to devel programming concepts.	The Course aims to develop programming skills in C++ and its object-oriented programming concepts.		
Unit		Content		No. of. Hours
Ι	Beginning with C++ statements: What is C++ - Applications of C++ - A simple C++ program – More C++ statements - An example with class. Tokens: Keywords - Identifiers and constants - Basic, user defined, Derived data types - Storage classes – Symbolic constants - Type compatibility - Declaration of variables – Dynamic initialization of variables – Reference variables.			10
Π	Operator in C++: Scope resolution operators - Member dereferencing operators - Memory management operators - Manipulators - Type cast operator. Functions in C++: The main function - Function prototyping - Call by reference - Return by reference - Inline functions – Default arguments - Constant arguments – Recursion - Function overloading - Math library functions.			10
III	Classes and Objects: C structure - Specifying a class - Defining member functions - A C++ program with class - Making an outside function inline - Nesting of member functions - Private member functions - Arrays within a class - Memory allocation for objects - Static data members - Static member functions - Arrays of objects -			

	Objects as function arguments - Friendly functions.		
IV	Constructors and Destructors: Constructors – Parameterized constructors - Multiple constructors in a class - Constructors with default arguments - Dynamic initialization of objects - Copy constructor - Dynamic constructors – Destructors. Operator overloading: Defining operator overloading - Overloading unary operators – Overloading binary operators – Overloading binary operators using friends.	9	
V	Inheritance: Extending classes - Defining derived classes - Single inheritance – Making a private member inheritable - Multilevel inheritance - Multiple inheritance - Hierarchical inheritance - Hybrid inheritance - Virtual base class - Abstract classes - Constructors in derived classes.	9	
	Text Book: 1. E. Balagurusamy, Object-Oriented Programming with C++, Seventh edition, McGraw-Hill Education Pvt. Ltd, Chennai, 2018. Unit 1: Chapters: 2.1 - 2.5, 3.1- 3.13. Unit 2: Chapters: 3.14 - 3.19, 4.1 - 4.10 & 4.12. Unit 3: Chapters: 5.1 - 5.15. Unit 4: Chapters: 6.1 - 6.8, 6.11, 7.2 - 7.5. Unit 5: Chapters: 8.1 - 8.11.		
References	 Reference Books: V. Ravichandran, Programming with C++, Second Edition, T Hill, New Delhi, 2011. H. Schildt, The complete Reference of C++, Tata-McGraw-H Company Ltd. New Delhi, 2003. P. B. Mahapatra, Programming in C++, S. Chand and Compar 2010. 	'ata McGraw - ill publishing ny, New Delhi,	
	 E-Recourses: 1. <u>https://archive.nptel.ac.in/courses/106/105/106105151/</u> 2. <u>https://onlinecourses.nptel.ac.in/noc24_cs44/preview</u> 3. <u>https://onlinecourses.swayam2.ac.in/aic20_sp01/preview</u> 4. <u>https://onlinecourses.nptel.ac.in/noc21_cs38/preview</u> 		
Course Outcomes	On completion of the course students should be able to CO1: formulate object-oriented programming concept. CO2: utilize the C++ tokens and operators.		

CO3: apply C++ class declaration and definition and its objects in software.
CO4: design constructors, destructors, and operator overloading.
CO5: apply the concept of inheritance in Software problems.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	1	2	2	3	3
CO2	2	2	3	2	2
CO3	0	2	1	2	3
CO4	1	2	2	1	3
CO5	1	3	1	2	2

Semester	II	Course Code	24MAUB	1207		
Course Title	OBJECT ORIENTED PR	OBJECT ORIENTED PROGRAMMING WITH C++ (PRACTICAL)				
No. of. Credits	1	1 No. of. contact hours per week		2		
Category	Core Course (Minor-3) – Practical					
Unit	Content		No. of. Hours			
	1. Compute simple2. Compute biggest3. Display Fibonacc4. List the prime nu5. Print perfect squ6. Write a program nature of roots.7. Sorting given list8. Compute biggest9. Sorting given list10. Read and display11. Compute factoria function.12. Write a program 0.0001% accurate 	and compound interest values. among three numbers. this series. Imbers in each range. ares in each range. to solve a quadratic equation an this of numbers in ascending order. among N integers. to f names in alphabetical order. matrix of any order. al of a given number using recurs to swap the values using function to calculate the following function to calculate the following function to $\frac{x^5}{5!} - \cdots$ $\frac{x^5}{5!} - \cdots$	d test the sive ons. ions to	32		

$cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$	
14. Write a program to calculate variance and SD of N numbers.	
15. Write a program to read two matrices and compute matrix multiplication using functions.	
16. Prepare employee details using class with array of objects.	
17. Program to illustrate objects as function arguments.	
18. Program to illustrate parameterized constructors.	
19. Program to illustrate multiple constructors in a class.	
20. Show by a suitable program: how the unary minus operator is overloaded?	
21. Show by a suitable program: how the binary operator is overloaded?	
22. Prepare student mark list by using multilevel inheritance.	
23. Program to illustrate multiple inheritance.	
24. Prepare student mark list by using hybrid inheritance.	
25. Prepare student mark list by using the concept of virtual	
base class.	

Semester	III	Course Code	24MAUC	2103	
Course Title	CALCULUS-I				
No. of. Credits	4	No. of. contact hours per week		4	
New Course/ Revised Course	Revised	If revised, Percentage of Revision effected (Minimum 20%)		20%	
Category	Core Course (Major-3)	Core Course (Major-3)			
Scope of the Course	Basic Skill	Basic Skill			
Cognitive Levels addressed by the course	 Remember the techniques of calculus in Differentiation and Integration (K-1) Understand the behaviour of limits of functions on the Real line (K-2) Evaluate the derivative of Real valued functions (K-5) Applying the derivatives to analyse the properties of functions (K-3 &K-4) Evaluate integration of functions (K-5) 				
Course Objective	The Course aims to learn the different concepts of differential and integral calculus.				
Unit		Content		No. of. Hours	
Ι	Limits and Continuity: Limits –Limits at Infinity – Continuity- Limits at Infinity			12	

П	The Derivative: Tangent Lines and Rates of Change-The Derivative Function-Introduction to Techniques of Differentiation-The Product and Quotient Rules-Derivatives of Trigonometric Functions-The Chain Rule.	13		
III	Differentiation (continuation): Implicit Differentiation-Derivatives of Logarithmic Functions-Derivatives of Logarithmic Functions- L'Hôpital's Rule-Indeterminate Forms.	13		
IV	Analysis of Functions I: Increase-Decrease- and Concavity- Analysis of Functions II: Relative Extrema- Graphing Polynomials- Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents-Absolute Maxima and Minima-Rolle's Theorem- Mean- Value Theorem.	14		
V	Integration: An Overview of the Area Problem-The Indefinite Integral-The Indefinite Integral-The Definition of Area as a Limit; Sigma Notation-The Definite Integral-The Fundamental Theorem of Calculus.	12		
References	 Signa Notation-The Definite Integrat The Fundamental Theorem of Calculus. Text Book: Howard Anton, Irl C. Bivens, Stephen Davis, Calculus, 10thEdition, Wiley India Pvt. Ltd. New Delhi, 2002. Unit 1: Chapter 1: Section 1.3 -1.6. Unit 2: Chapter 3: Section 3.2 – 3.6, Unit 3: Chapter 4: Section 4.1- 4.3, 4.5, 4.8 Unit 4: Chapter 5: Section 5.2, 5.3, 5.5, 5.6, 5.8 Unit 5: Chapter 7: Section 7.1-7.3, 7.6, 7.7 Reference Books: James Stewart, Calculus - Early Transcendentals, 7e, Cengage Learning Pvt. Ltd, New Delhi, 2012. George B. Thomas, JR & Ross L. Finney, Calculus and Analytic Geometry, Sixth edition, Narosa Publishing House, New Delhi, 1986. Thomas & Fenny, Calculus, 9th Ed. Pearson, USA, 2002. Courant, R., and F. John, Introduction to Calculus and Analysis, Volume I, Springer, New York, 1999. Tom. M. Apostol, Calculus-I, 2 Edition, John Wiley & Sons. E-Recourses: https://nptel.ac.in/courses/111/104/111104144/ 			
Course Outcomes	 <u>https://nptel.ac.in/courses/111/104/111104144/</u> <u>https://nptel.ac.in/courses/111/106/111106146/</u> On completion of the course students should be able to CO1: find limits of functions. CO2: understand the geometry of differentiation and integration. CO3: analyse the characteristics of functions. CO4: compute definite integrals. CO5: solve differentiation and integration of functions involving logarithmic and 			

exponential functions.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	2	1
CO2	3	1	1	2	2
CO3	3	3	2	3	2
CO4	2	2	3	1	2
CO5	3	1	2	2	1

Semester	III	Course Code	24MAUC2	2104		
Course Title	MATHEMATICAL STA	MATHEMATICAL STATISTICS				
No. of. Credits	4	No. of. contact hours per week		4		
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)				
Category	Core Course (Major-4)	Core Course (Major-4)				
Scope of the Course	 Basic Skill Skill Developmen Employability Entrepreneurship 	 Basic Skill Skill Development Employability Entrepreneurship 				
Cognitive Levels addressed by the course	 Knowing various statistical techniques (K-1) Understanding the random variables and distribution function (K-2). Applying the measures of central tendency (K-3). Analyzing the theoretical distributions (K-4). Evaluating the regression & correlation equations (K-5). 					
Course Objective	The course aims to impart skills in various statistical methods and its applications					
Unit	Content No. of. Hours			No. of. Hours		
Ι	Measures of Central Tendency – Measures of Dispersion – Moments, Skewness and Kurtosis.			12		
II	Theory of Probability: Definition – Axioms – Addition and Multiplication Theorems –Baye's Theorem on conditional probability and its applications.			13		
III	Random variables – Di Probability Mass Functi	iscrete and Continuous – Def on and Density Function – Di	inition of istribution	13		

	Functions – Properties – Mathematical Expectations – Mean,				
	Variance and Moments – Moment Generating Functions – Simple				
	properties.				
	Theoretical distributions – Discrete: Binomial Distribution and				
IV	Poisson distribution – Continuous: Normal Distribution Properties	14			
	and Applications.				
	Curve Fitting by the Method of Least Squares – Correlation –	10			
V	Properties – Regression – Equations of Regression Lines – Angle 12				
	between Regression Lines – Properties and Applications.				
		11.1.			
	S. Arumugam & A. Thangapandi Isaac, Statistics , New Gamma Pu	iblishing			
	House, Tirunelveli, 2006.				
	Unit 1: Chapter 1: Sections 1.0 -1.4; Chapter 2: Section 2.0-2	2.5; Chapter 3:			
	Sections: 3.0 - 3.2; Chapter 4: Sections: 4.0 - 4.2.				
	Unit 2: Chapter 11: Sections: 11.0 -11.2.				
	Unit 3: Chapter 12: Sections 12.0 -12.5.				
	Unit 4: Chapter 13: Sections 13.0-13.3.				
	Unit 5: Chapter 5: Section 5.0, 5.1; Chapter 6: Section 6.0 - 6.3				
	Reference Books:				
References	1. J.N. Kapoor & H.C. Saxena, Mathematical Statistics , S. Chand & Co Pvt. Ltd.,				
	New Delhi, 1994.				
	2. S. C. Gupta & V. K. Kapoor, Fundamentals of Mathematical Statistics, S. Chand				
	& Sons Pvt. Ltd., New Delhi, 1994.				
	3. A. M. Goon, M. K. Gupta, B. Dasgupta, Fundamentals of Statistics (Vol. I & II),				
	World Press, Calcutta, 2008.				
	4. A.M. Mood, F.A. Gravbill, and D.C. Boes, Introduction to the 7	Theory of			
	Statistics 3rd Edn (Reprint) Tata McGraw-Hill Pub Co Itd	N.: 1. 2017			
	butbuteb, bia Lan., (reprint), rata mediaw rinn rab. 60. Eta.,	Noida, 2017			
	E-Recourses:	INOIda, 2017			
	E-Recourses: 1. https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ma22/	1N01da, 2017			
	E-Recourses: 1. https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ma22/ 2. https://nptel.ac.in/courses/108/106/108106106/	Noida, 2017			
	E-Recourses: 1. https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ma22/ 2. https://nptel.ac.in/courses/108/106/108106106/ 3. https://nptel.ac.in/courses/111106112	INOIDA, 2017			
	E-Recourses: 1. https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ma22/ 2. https://nptel.ac.in/courses/108/106/108106106/ 3. https://nptel.ac.in/courses/108/106/108106106/ On completion of the course students should be able to	INOIDA, 2017			
	E-Recourses: 1. https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ma22/ 2. https://nptel.ac.in/courses/108/106/108106106/ 3. https://nptel.ac.in/courses/108/106/108106106/ 3. https://nptel.ac.in/courses/111106112 On completion of the course students should be able to CO1: analyze the given data by using statistical methods.	INOIDA, 2017			
Course Outcomes	E-Recourses: 1. https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ma22/ 2. https://nptel.ac.in/courses/108/106/108106106/ 3. https://nptel.ac.in/courses/108/106/108106106/ 3. https://nptel.ac.in/courses/111106112 On completion of the course students should be able to CO1: analyze the given data by using statistical methods. CO2: explain the basic concepts of probability and related results.	INOIDA, 2017			
Course Outcomes	 E-Recourses: <u>https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ma22/</u> <u>https://nptel.ac.in/courses/108/106/108106106/</u> <u>https://nptel.ac.in/courses/111106112</u> On completion of the course students should be able to CO1: analyze the given data by using statistical methods. CO2: explain the basic concepts of probability and related results. CO3: employ probabilistic methods to solve problems arise in different 	nt situations.			
Course Outcomes	 E-Recourses: <u>https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ma22/</u> <u>https://nptel.ac.in/courses/108/106/108106106/</u> <u>https://nptel.ac.in/courses/111106112</u> On completion of the course students should be able to CO1: analyze the given data by using statistical methods. CO2: explain the basic concepts of probability and related results. CO3: employ probabilistic methods to solve problems arise in different CO4: design curve fitting methods for the given data. 	nt situations.			

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	1	1	3	3	2
CO2	1	1	2	3	3
CO3	2	2	2	3	3
CO4	1	1	2	3	3
CO5	1	1	2	2	3

Semester	III	Course Code	24MAUB2	2111
Course Title	PROGRAMMING WITH	I JAVA (THEORY)		
No. of. Credits	3	No. of. contact hours per week		3
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		
Category	Ability Enhancement Co	urse (AEC)		
Scope of the Course	• Basic Skil			
Cognitive Levels addressed by the course	 Identify Classes, expressions, Acce Understanding do statements (K-2). Applying Java ap interactive conte Analyzing graphi To create geomet 	objects, and methods to define a essing interface variables (K-1). ecision making with looping and plets to create Web pages to con nt (K-3). ics programming with geometry crical shapes (K-5).	class, Opera l branching tain animat and statistic	ators and using control ed graphics or cal data (K-4).
Course Objective	applications in web page statistical data.	designing, geometry and graphic	g skills in JA cal represen	tation of
Unit		Content		No. of. Hours
Ι	Overview of java langua More of java - An appl structure - Java tokens program - Java virtual Constants, Variables, and types - Declaration of va of variables - Symbolic c	ge: Introduction - Simple java j lication with two classes - Java - Java statements - Implement machine - Command line a d Data types: Constants – Variab ariables giving values to variable onstants - Type casting - Getting	program – a program ing a java rguments. eles – Data es - Scope g values of	10

	variables - Standard default values.	
II	Operators and Expressions: Arithmetic operators - Relational operators - Logical operators - Assignment operators - Increment and decrement operators - Conditional operators - Bitwise operators - Special operators - Arithmetic expressions - Evaluation of expressions - Precedence of arithmetic operators - Type conversion in expressions - Operator precedence and associativity - Mathematical functions. Decision making and Branching: Decision making with if statement - Simple if statement - The if else statement - Nesting of if else statements - The else if ladder - Switch statement - The ?: operator.	10
III	Decision making and Looping: While statement - Do statement - For statement - Jumps in loops - Labeled loops. Classes, Objects, and Methods: Defining a class – Fields declaration – Methods declaration - Creating objects - Accessing class members - Constructors - Method overloading - Static members - Nesting of methods – Inheritance: Extending a class - Overriding methods - Final variables and methods - Final classes - Finalizer methods - Abstract methods and classes - Visibility control. Arrays, Strings, and Vectors: One dimensional arrays - Creating an array - Two- dimensional arrays - Strings - Vectors - Wrapper Classes.	10
IV	Interfaces: Defining interfaces - Extending interfaces - Implementing interfaces - Accessing interface variables. Packages: Java API packages - Using system packages - Naming conventions - Creating packages - Accessing a package -Using a package - Adding a class to a package - Hiding classes.	9
V	Applet programming: Introduction - How applets differ from applications - Preparing to write applet - Building applet code - Applet life cycle - Creating an executable applet - Designing a web page - Applet tag - Adding applet to HTML file - Running the Applet - More about applet tag - Displaying numerical values - Getting input from the user. Graphics programming: Introduction - The graphics class - Lines and rectangles - Circles and ellipses - Drawing arcs - Drawing polygons - Line graphs - Using control loops in applets - Drawing bar charts.	9
References	Text Book: 1. E. Balagurusamy, Programming with Java , Fifth Edition, Mc	Graw - Hill

	Education (India) Pvt. Ltd., Chennai, 2017.
	Unit 1: Chapters 3, 4.
	Unit 2: Chapters 5, 6.
	Unit 3: Chapters 7, 8, 9.
	Unit 4: Chapters 10, 11.
	Unit 5: Chapters 14, 15.
	Reference Books:
	1. H. Sehildt, JAVA2: The Complete Reference, Fourth Edition, TMH
	Publishing Company, New Delhi, 2001.
	2. C. Xavier, Programming with JAVA 2 , SciTech Publications, Chennai, 2000.
	E-Recourses:
	1. <u>https://nptel.ac.in/courses/106/105/106105191/</u>
	2. <u>https://onlinecourses.swayam2.ac.in/aic20_sp13/preview</u>
	3. <u>Search Tutorials spoken-tutorial.org</u>
	On completion of the course students should be able to
	CO1: create Java programs and implement java tokens.
	CO2: solve problems using Java operators and expressions.
Course Outcomes	CO3: demonstrate decision making and looping in programs.
	CO4: critique the concept of interfaces.
	CO5: apply the applet and graphics programming with geometry and statistical data
	analysis.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	1	2	3	4	5
CO2	1	2	2	3	3
CO3	2	2	1	3	2
CO4	3	2	3	2	3
CO5	2	1	2	2	2

Semester	III	Course Code	24MAUB2	2112
Course Title	PROGRAMMING WITH	I JAVA (PRACTICAL)		
No. of. Credits	1	No. of. contact hours per week		2
Category	AEC			
Unit		Content		No. of. Hours

1.	Write a program to convert the given temperature in	
	Fahrenheit to Celsius and vice versa using Scanner class	
	methods.	
2.	Write a Java program to determine the sum of Harmonic	
	series for given 'n' by DataInputStream class methods.	
3.	Write a program to print first n Fibonacci numbers using	
	DataInputStream class.	
4.	Write a program to perform any five math functions using	
	Scanner class methods.	
5.	Write a program to solve two linear equations with two	
	unknown using Scanner class methods and verify the	
	result manually.	
6.	Write a program to illustrate bitwise OR, bitwise AND,	
	and bitwise exclusive OR using Scanner class methods for	
	input and verify result manually.	
7.	Find biggest among three numbers using Scanner class	
	methods and nested if concept, conditional operator.	
8.	Prepare EB bill for TNEB slab rates using Scanner class	
	methods elseif ladder.	
9.	Prepare grade of a student for given 5 subject marks using	32
	Scanner class methods and switch-case.	
10.	Display any three form of Floyd's triangle for given limit	
	of rows using DataInputStream class methods.	
11.	Compute the power of 2 using for loop up to the given	
	limit n using Scanner Class method.	
12.	Write a program to illustrate constructor overloading.	
13.	Write a program to illustrate inheritances.	
14.	Write a program to illustrate overriding methods.	
15.	Write a program to sort a list of given numbers using	
	Scanner class methods.	
16.	List the factorial values up to the given integer received	
	from Data Input Stream class.	
17.	Write a program to receive two matrices, compute its	
	product and display all matrices.	
18.	Write a program to alphabetical ordering of given strings	
	using inputs from Scanner class methods.	
19.	Use of wrapper class methods to compute compound	
	interest.	
20.	Illustrate a program to implementing interfaces.	

21. Illustrate multiple packages and adding a class to a package	
in a suitable program.	
22. Write an applet program to receive three numeric values	
from the user and display the largest value on the screen	
with HTML page.	
23. Write an applet program to draw the given image with	
appropriate HTML page.	
24. Write an applet program to draw line graphs for the given	
data with appropriate HTML page.	
25. Write an applet program to draw bar chart for the given	
data with appropriate HTML page.	

Semester	IV	Course Code	24MAUC2	2205
Course Title	ABSTRACT ALGEBRA			
No. Of. Credits	4	No. of. Contact hours per week		4
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		
Category	Core Course (Major-5)			
Scope of the Course	Basic Skill			
Cognitive Levels addressed by the course	 Knowing the basic p Understanding the origon isomorphism of group isomorphism of group Using Lagrange's the Testing of isomorph Investigate the prop Constructing Cayley rings. 	properties of groups, subgroups, s order of elements in a group, cos ups as well as rings. eorem to find the properties of s ism of groups and rings. perties of permutation groups and y Table, subgroups in groups and	rings, ideals ets, normal ubgroups of d special typ l subrings an	, and fields. subgroups, and f a group pes of rings. nd ideals in
Course Objective	The Course aims to provi	ide some knowledge about vario	us algebraic	structures.
Unit		Content		No. of. Hours
Ι	Groups: Introduction - properties of a group Permutation groups.	Definition and examples - E – Equivalent definition of a	lementary group –	13
II	Subgroups – Cyclic gro Lagrange's theorem.	ups - Order of an element –C	Cosets and	14

III	Normal subgroups and quotient groups – Isomorphism - Cayley's Theorem – Homomorphism's.
IV	Rings: Definition and examples – Elementary properties of rings – Isomorphism - Type of rings – Characteristic of a ring – Subring.12
V	Ideals - Quotient rings – Maximal and prime ideals - Homomorphism of rings. 12
References	 Text Book: S. Arumugam & A. T. Isaac, Modern Algebra, SciTech Publications (India) Pvt. Ltd., Chennai, 2003. Unit 1: Chapter 3: Sections 3.0, 3.1, 3.2, 3.3, 3.4 Unit 2: Chapter 3: Sections 3.5, 3.6, 3.7, 3.8 Unit 3: Chapter 3: Sections 3.9, 3.10, 3.11 Unit 4: Chapter 4: Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 Unit 5: Chapter 4: Sections 4.7, 4.8, 4.9, 4.10 Reference Books: P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra, 2nd Edition. Cambridge University Press, New Delhi, 1997 John. B. Fraleigh, A First Course in Abstract Algebra, 7th edition, Addison-Wesley Publications, US, 2003. S. Narayanan & T. K. Manicavachagom Pillay, Modern Algebra, Vol. II, S. Viswanathan Pvt. Ltd., Chennai, 1997. Joseph Gallian, Contemporary Abstract Algebra, 9th edition, Chapman and Hall/CRC, 2021. E-Recourses: https://nptel.ac.in/courses/111/106/111106113/ https://nptel.ac.in/courses/111/106/111106113/
Course Outcomes	On completion of the course students should be able to CO1: analyze the basic properties of groups and subgroups. CO2: identify the types of homomorphism and use them to classify groups. CO3: apply the theorems to study the structure of groups. CO4: outline the basic properties of rings, fields, and integral domains. CO5: utilize the ideals to construct fields and integral domains.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1	1	2
CO2	3	1	1	1	2
CO3	3	2	1	1	2
CO4	3	1	1	1	2

|--|

Semester	IV	Course Code	24MAUC2	2206
Course Title	CALCULUS-II			
No. of. Credits	4	No. of. contact hours per week		4
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		
Category	Core Course (Major-6)			
Scope of the Course	Basic Skill / Advanc	ed Skill		
Cognitive Levels addressed by the course	 Remembering limits Understanding the l Applying partial der several variables (K- Analyse vector field Evaluating double in Stokes's Theorem (K) 	s and graphs of functions of sing imits and derivatives of function rivatives to find the maxima & m -3) s and line integrals over higher of ntegral and triple integrals by ap X-4 &K-5)	le variables(ns of several ninima of fu dimensional plying Gree	(K-1) variables (K-2) nctions of l space (K-4). en's and
Course Objective	The Course aims to learn	the different concepts of different	ential and in	tegral calculus.
Unit		Content		No. of. Hours
Ι	Vector Functions: Vector Derivatives and Integrals Curvature – Functions of Continuity.	r Functions and Space Curves – of Vector Functions – Arc Leng Several Variables – Limits and	th and	14
II	Partial Derivative: Partia Directional Derivatives a Minimum Values – Lagra	l Derivatives – The Chain Rule - nd the Gradient Vector – Maxin ange Multipliers.	- num and	14
III	Multiple Integrals: Doub Integrals – Double Integr Integrals.	le Integrals over Rectangles – Ite rals over General Regions – Trip	erated le	12
IV	Vector Calculus: Vector Theorem of Line Integral	Fields – Line Integrals – The Fur ls – Green's Theorem.	ndamental	12
V	Vector Calculus (Continu Integrals – Stokes' Theor	ued): Curl and Divergence – Surf em – The Divergence Theorem.	face	12
	Torrt Doolson			

	Unit 1: Chapter 13: Section 13.1 – 13.3, Chapter 14: Section 14.1, 14.2.
	Unit 2: Chapter 14: Section 14.3, 14.5 – 14.8.
	Unit 3: Chapter 15: Section 15.1- 15.3, 15.6, 15.7.
	Unit 4: Chapter 16: Section 16.1-16.4.
	Unit 5: Chapter 16: Section 16.5, 16.7-16.9.
	Reference Books:
	1. Howard Anton, Irl C. Bivens, Stephen Davis, Calculus, 7th Edition, Wiley
	India Pvt. Ltd., New Delhi 2002.
	2. George B. Thomas, JR & Ross L. Finney, Calculus and Analytic Geometry,
	Sixth edition, Narosa Publishing House, New Delhi, 1986.
	3. M.D. Weir, J. Hass, F.R. Giordano, Thomas' Calculus, 11th Edition, Pearson
	Education, USA, 2008.
	4. Thomas & Fenny, Calculus, 9th Ed. Pearson, USA, 2002.
	Courant, R., and F. John, Introduction to Calculus and Analysis, Volume II,
	Springer, New York, 1999.
	E-Recourses:
	1. https://nptel.ac.in/courses/111/104/111104144/
	2. https://nptel.ac.in/courses/111/107/111107108/
	3. <u>https://nptel.ac.in/courses/111/106/111106146/</u>
	On completion of the course students should be able to
	CO1: Compute limits, partial derivatives, directional derivatives, gradient of
	functions of several variables.
	CO2: Applying partial derivatives to find extremum of functions of several
Course Outcomes	variables.
	CO3: Compute Double/ Trible integrals.
	CO4: Construct vector fields on higher dimensional spaces.
	CO5: Compute Curl, Divergence and surface integrals.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	2	1
CO2	3	3	3	1	1
CO3	3	2	1	1	1

CO4	3	3	2	2	2
CO5	3	2	2	2	1

Semester	IV	Course Code	24MAUC2	2207
Course Title	SEQUENCES AND SERI	ES		
No. of. Credits	4	No. of. contact hours per week		4
New Course/ Revised Course	Revised Course	If revised, Percentage of Revision effected (Minimum 20%)		60%
Category	Core Course (Major-7)			
Scope of the Course	Basic Skill			
Cognitive Levels addressed by the course	 Remembering the b Remembering the b divergent, and oscill Understanding and sequences, sub-sequ Applying the Comp to test the converge 	asic concepts of Real number synasic concepts of bounded, mono lating sequences (K-1). analysing the algebra of limits, b tences and limit points (K-2 & K arison test, Kummer's test, Root nces and divergence of series (K	stem(K-1) tonic, conve oehaviour of -4). test and Co -3).	ergent, ² monotonic ndensation test
Course Objective	The Course aims to enha	nce basic skills in the areas of se	quences and	l series.
Unit		Content		No. of. Hours
Ι	Axioms and Properties of order axioms – Bounded axiom (existence of LU (existence of GLB's) – An Density of the rationals nested intervals – Dedek value.	of Real Numbers: The field axio I sets, LUB and GLB – The cor IB's) – Dual of the completen rchimedean property – Bracket s – Monotone sequences – Th ind cut property – Square roots -	oms – The npleteness ess axiom function – eorem on – Absolute	14
II	Sequences: Sequences – 2 and limsup– Convergent	Limit points of a sequence – Lir sequences – Non-convergent se	nit- liminf quences.	13
III	Sequences (Continued): (– Algebra of Sequences - Sequences.	Cauchy's general principle of co – Some important Theorems – N	nvergence Monotonic	13
IV	Infinite Series: Introductests for positive term set	tion – Positive term series – C eries – Cauchy's root test – D'A	omparison Alembert's	12

	ratio test - Raabe's test.				
	Infinite Series (Continued): Logarithmic test – Integral test –				
V	Gauss's test - Series with arbitrary terms - Rearrangement of	12			
	terms.				
	Text Books:				
	1. Sterling K. Berberian, A First Course in Real Analysis , Spring	ger Verlag, New			
	York, 1994.				
	Onit 1: Chapter 1 & Chapter 2.	tion) New Age			
	International Publishers, 2017.	cioni), ivew rige			
	Unit 2: Chapter 3 (sec 1 to 5)				
	Unit 3: Chapter 3 (sec 6 to 9)				
	Unit 4: Chapter 4 (sec 1 to 6)				
	Unit 5: Chapter 4 (sec 7 to 11)				
	Reference Books:				
	1. R. G. Bartle & D.R. Sherbert, An Introduction to Real Analysis , John Wiley &				
	Sons, New York, 1982.				
	Delhi. 2005.	I VI. LIU., INEW			
References	3. Richard R. Goldberg, Methods of Real Analysis , Oxford & IBH Publishing				
	CO. PVT. LTD., New Delhi, 1970.				
	4. S. K. Mapa, Introduction to Real Analysis, 8th Edition, Sarat Book House,				
	Kolkata, 2014.				
	5. Kenneth A. Ross, Elementary Analysis , The Theory of Calc	culus, Springer-			
	6 Aiith Kumar and S Kumaresan A Basic Course in Real Analy	rsis CRC Press			
	Boca Raton, 2015.	, 61 , 61, 61, 61, 61, 61, 61, 61, 61, 61, 61			
	E-Recourses:				
	1. <u>http://nptel.ac.in/courses/109104124/</u>				
	2. <u>https://nptel.ac.in/courses/111/106/111106142/</u>				
	3. <u>https://nptel.ac.in/courses/111/105/111105112/</u>				
	4. <u>https://nptel.ac.in/courses/111/106/111106053/</u>				
	5. <u>https://nptel.ac.in/courses/111/101/111101134/</u>				
	6. <u>www.maths.manchester.ac.uk/~avb/0n1_pdf/0N1_All.pdf</u>				
	On completion of the course students should be able to				
	CO1: find LUB/ GLB of sets of real numbers.				
Course Outcomes	CO2: analyse the behaviour of sequences.				
	CO3: compute the limit of convergent sequences.				
	CO4: applying various test to test the convergence of series.				
	CO5: compute the limit of convergent series.				

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	1	2
CO2	3	2	2	2	1
CO3	3	2	3	2	1
CO4	3	2	2	1	2
CO5	3	3	2	2	1

Semester	IV	Course Code	24MAUB2	2213
Course Title	STATISTICAL METHOI	DS (THEORY)		
No. of. Credits	3	No. of. contact hours per week		3
New Course/ Revised Course	Revised Core Course (Minor-4)-	If revised, Percentage of Revision effected (Minimum 20%) Theory		30%
	Basic Skill			
Scope of the Course				
Cognitive Levels addressed by the course	 Remember the concept of attributes, hypothesis and sampling distributions χ² test and goodness of fit (K-1). Understand the methods the techniques of analysis and variance, statistical inference (K-2) Apply the technique of analysis of variance for some statistical problems(K-3). Analyze the variance and coding of data by using χ² test (K-4). Evaluate the significance for large samples and small samples (K-5) Create statistical models for real world situations and solve them using these techniques (K-6) 			
Course Objective	The Course aims to impa	rt deep knowledge about statisti	cal methods	3.
Unit		Content		No. of. Hours
Ι	Association of Attribut correlation and associa Consistency of data - a studying association - Mi	es: Introduction - Difference ation - Notation and Term ssociation and dissociation - n scellaneous illustrations.	between inology - nethods of	10
II	Statistical inference-Tes error and sampling distri	ts of hypotheses: Introduction bution-estimation.	n-standard	10

III	Statistical inference-Tests of hypotheses (continued): test ofsignificance for large samplesTest of significance for smallsamples.9			
IV	χ^2 test and goodness of fit: Introduction- χ^2 defined-conditions for applying χ^2 test-Yates' corrections-Uses of χ^2 test-additive property of χ^2 - Chi-square for specified value of population variance.			
V	Analysis of variance-assumptions in analysis of variance-technique of analysis of variance-coding of data-analysis of variance in two- way classification model.			
References	 Text Book: S.P. Gupta, Statistical Methods, Sultan Chand & Sons, New Delhi, 20 Unit I: Page number 477-499. Unit II: Page number 881-901. Unit III: Page number 901-929. Unit IV: Page number 953-972. Unit V: Page number 1009-1038. Reference Books: S. C. Gupta and V. K. Kapoor, Fundamentals of Mathem Sultan Chand & Sons, New Delhi, 1994. J. N. Kapoor and H. C. Saxena, Mathematical Statistics, S Sons, New Delhi, 1994. S. Arumugam & A. Thangapandi Isaac, Statistics, New Gar House, Tirunelveli, 2006. 	001. atical Statistics, Sultan Chand & nma Publishing		
	1. <u>https://nptel.ac.in/courses/111105041/</u> 2. <u>https://nptel.ac.in/courses/111105090/</u>			
Course Outcomes	 On completion of the course students should be able to CO1: analyze the concept about the methods of attributes. CO2: compute standard error and sampling distribution. CO3: predict the occurrence of null and alternative hypotheses. CO4: analyze the given data using Chi-square test. CO5: estimate the variance and coding of data. 			

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	1	2	2	3	3
CO2	2	2	3	2	2

CO3	1	2	1	2	3
CO4	1	2	2	1	3
CO5	1	2	2	3	3

Semester	IV	Course Code	24MAUB2	2214	
Course Title	STATISTICAL METHO	DS (PRACTICAL)			
No. of. Credits	1	No. of. contact hours per week		2	
Category	Core Course (Minor-4) -	Core Course (Minor-4) -Practical			
	List of Prace	ical		No. of. Hours	
	1. Drawing bar cha	rts, Pie diagrams, Histograms, Pi	ictograms,		
	3-D bars, and otl				
	2. Drawing graphs of frequency curves, frequency polygons,				
	Normal probability curve, cumulative distribution curves,				
	probability curve	es for different distributions.			
	3. Computation of	Mean, Variance, Skewness and	Moments,		
	Kurtosis measure	es.		32	
	4. Computation	of Moment generating	functions,		
	characteristic fui	nctions, cumulants and related m	easures.		
	5. Computation o	f Covariance, Correlation C	oefficient,		
	Equations of Reg	ression lines and curves.			
	6. Curve fitting for	the given statistical data.			

Semester	IV	Course Code	24MAUA2201			
Course Title	ANALYTICAL GEOMET	ANALYTICAL GEOMETRY				
No. of. Credits	4	No. of. contact hours per	4			
	-	week	_			
Nou Course/		If revised, Percentage of				
Revised Course		Revision effected				
		(Minimum 20%)				
Category	Ability Enhancement Course					
Scope of the Course	Basic Skill					
Cognitive Levels	• Understanding the representation of basic curves in polar coordinates (K-2)					
addressed by the course	• Analysing the Conic	cs and properties (K-3)				

	 Analysing equations of a circle on a sphere and intersection of two spheres (K-3). Remembering the basic concepts of Cartesian coordinates and apply them in finding Directions cosines (K-1 & K-3) 				
	• Evaluating the angle between two planes and length of perpendicular from a				
	point on the plane (K-5).				
Course Objective	The Course aims to study the various properties of geometrical dimensions and three dimensions.	figures in two			
Unit	Content	No. of. Hours			
Ι	Polar Equations: Representation of basic curves in polar coordinates. General equation of Conic: Tracing the Conic - Properties and its applications.	13			
II	Rectangular Cartesian co-ordinates: Direction cosines of a line: Co- ordinates – Projections – Direction Cosines.	13			
III	The Plane: Equations of Plane – Angle between planes – Length of perpendicular from a point on the plane.	13			
IV	The Straight Line: Equation of the straight line – coplanar lines – skew lines – intersection of three planes.	13			
V	The Sphere: Equation of Sphere – Equation of a circle on a sphere – intersection of two spheres.	12			
References	 Text Books: T. Natarajan & T. K. Manicavachagom Pillay, Analytical G Viswanathan Pvt. Ltd., Chennai, 2001. Unit 1: Chapter IX (Sections: 1 - 9), X (Sections: 1 - 8). T. Natarajan & T. K. Manicavachagom Pillay, Analytical G Viswanathan Pvt. Ltd., Chennai, 2001. Unit 2: Chapter I. Unit 3: Chapter II. Unit 4: Chapter III. Unit 5: Chapter IV. Reference Books: P R Vittal, Analytical Geometry 2D and 3D, Pearson, 2013 C George B. Thomas, JR & Ross L. Finney, Calculus and Anal Sixth edition, Narosa Publishing House, New Delhi, 1986. S. Arumugam & Issac, Analytical Geometry 3D and Vector Gamma Publications, Palayamkottai, 1997. E-Recourses:	cometry 2D, S. cometry 3D, S. copy right. lytic Geometry, calculus, New			

	2. <u>https://freevideolectures.com/course/2776/ma-141-analytic-geometry-and-</u>			
	<u>calculus-i</u>			
	3. <u>https://cosmolearning.org/courses/mah-by-fives-trigonometry-502/</u>			
	4. <u>https://cosmolearning.org/courses/pre-calculus-6-9-trigonometry-review/</u>			
Course Outcomes	On completion of the course students should be able to			
	CO1: discuss conics in polar co-ordinates.			
	CO2: outline planes and its properties as 3-dimensional objects.			
	CO3: apply the concepts of skew lines and spheres in geometrical problems.			
	CO4: solve problems related to geometry of two dimension and three dimensions.			

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	1	2
CO2	3	2	3	1	1
CO3	3	3	2	2	1
CO4	2	3	3	1	2

Semester	IV	Course Code	24MAUA2	2202	
Course Title	BASIC NUMERICAL METHODS				
No of Credits	3	No. of. contact hours per		3	
ito, oi. cicults	5	week		0	
New Course/		If revised, Percentage of			
Powieod Course		Revision effected			
Kevised Course		(Minimum 20%)			
Category	Ability Enhancement Course				
Scope of the Course	Basic Skill				
	• Knowing forward interpolation and backward interpolation (K-1).				
	• Understanding Numerical Differentiation through Newton's formula,				
Cognitive Levels	Gauss's formula (K-2).				
addressed by the course	• Applying Taylor's series method - Euler's method - Modified Euler to solve				
	ODE (K-3).				
	• Evaluate the Solution to Simultaneous Linear Equation (K-5).				
Course Objective	The course aims to develop efficient algorithms for solving problems.				
Unit	Content No. of. Hours				
	Interpolation: Difference	es - relation between differe	ences and		
Ι	derivatives - differences	s of polynomial - Newton's fo	rmula for	11	
	forward interpolation	- Backward interpolatio	n–Central		

	differences - Cours's forward formula - backward formula and					
	Stirling's interpolation formula.					
	Numerical Differentiation: Newton's formula Gauss's formula for					
	first and second derivatives Numerical Integration: General					
П	first and second derivatives. Numerical Integration: General					
11	rule Curve Fitting: Principles of least squares. Fitting a straight					
	line. A perchole and exponential gurve					
	Numerical Alashra and Transcendental Equation: Einding					
TTT	Numerical Algebra and Transcendential Equation: Finding	0				
111	approximate values of the roots iteration method - bisection	9				
	method - Newton Raphson method – Regula Falsi method.					
	Solution to Simultaneous Linear Equation: Back substitution -					
IV	Gauss elimination method, Gauss - Jordon method. Iterative	9				
	methods: Gauss - Jacobi's iteration method – Gauss-Seidel iterative					
	method.					
V	Numerical Solution of Ordinary Differential Equations: Taylor's	9				
	series method - Euler's method - Modified Euler's method -Runge-					
	Kutta method of second and fourth order.					
	Text Book:					
	1. P. Kandasamy, K. Thilagavathy & K. Gunavathi, Numerical Methods, S.					
	Chand & Company Ltd., New Delhi, 2012.					
	Unit 1: Chapters 5, 6, 7					
	Unit 2: Chapters 1, 9					
	Unit 3: Chapter 3					
References	Unit 4: Chapter 4					
	Unit 5: Chapter 11 Peference Beeke					
	1. S. S. Sastry, Introductory Methods of Numerical Analysis, Fifth Edition,					
	PHI Learning Pvt. Ltd., New Delhi, 2015.					
	2. A. Singaravelu, Numerical Methods , Meenakshi Publications, Chennai,					
	1992.					
	3. S. Arumugam, Numerical Methods, 2 nd edition, Scitech Publ	lications (India)				
	Pvt Ltd., Chennai, 2010.					
	On completion of the course students should be able to					
	CO1: solve the interpolation problems.					
	CO2: identify the basic concept of numerical differentiation and integration,					
Course outcomes	principle of least squares.					
	CO3: analyze the different aspects of numerical solution of algebraic	and				
	Transcendental equations.					
	CO4: evaluate the solutions of simultaneous linear equations.					
	CO5: discuss the role and application of numerical solution of ordinary differential					

equations.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	1	3	2	3	2
CO2	2	3	2	2	3
CO3	1	3	2	3	1
CO4	1	3	2	3	2
CO5	2	3	1	3	1

Semester	V	V Course Code 24MAUC3108			
Course Title	LINEAR ALGEBRA	LINEAR ALGEBRA			
No. of. Credits	4 No. of. contact hours per 4				
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)			
Category	Core Course (Major-8)				
Scope of the Course	Basic Skill				
Cognitive Levels addressed by the course	 Recognizing the basic properties of vector spaces, inner product spaces. Interpreting the concepts of linear algebra from a geometric point of view. Solving simultaneous linear equations, finding eigenvalues and eigenvectors, the inverse of a matrix by using Cayley Hamilton Theorem. Examining the linear independence and orthogonality of a set of vectors. Constructing linearly independent sets, basis, subspaces, linear transformations in a vector space. 				
Course Objective	The course aims to introduce the fundamentals of vector spaces.				
Unit	Content No. of. Hours			No. of. Hours	
Ι	Vector Spaces: Introduction - Definition and examples – Subspaces.			12	
II	Linear transformation – S	Span of a set – Linear independenc	ce.	13	
III	Basis and dimension- transformation.	Rank and nullity - Matrix of	a linear	14	

IV	Inner product spaces: Introduction - Definition and examples – Orthogonality –Orthogonal Complement.			
V	Elementary transformations - Rank of a matrix - Simultaneouslinear equations - Characteristic equation and Cayley Hamilton13Theorem - Eigen values and eigen vectors.			
References	 Text Book: S. Arumugam & A. T. Isaac, Modern Algebra, SciTech Publications (India Pvt. Ltd., Chennai, 2003. Unit 1: Chapter 5: Sections 5.0, 5.1, 5.2. Unit 2: Chapter 5: Sections 5.6, 5.7, 5.8. Unit 3: Chapter 6: Sections 6.0, 6.1, 6.2, 6.3. Unit 5: Chapter 7: Sections 7.4, 7.5, 7.6, 7.7, 7.8. Reference Books: S. Narayanan & T. K. Manicavachagom Pillay, Modern Algebra, Vol III, S Viswanathan Pvt. Ltd., Chennai, 1997. S. Kumaresan, Linear Algebra: A Geometric Approach, Prentice Hall o India, 2006. Vivek Sahai & Vikas Bist, Linear Algebra, Narosa Publishing House, New Delhi, 2002. Gilbert Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press 2022. 			
	E-Recourses:			
	 <u>https://onlinecourses.nptel.ac.in/noc18_ma13</u> <u>https://nptel.ac.in/courses/111106135</u> 			
Course Outcomes	On completion of the course students should be able to CO1: explain the basic properties of vector spaces. CO2: identify the concepts of linear algebra in geometric point of view. CO3: form linear transformations as matrix form and vice versa. CO4: apply the tools of linear algebra to solve the system of equations. CO5: construct orthonormal bases of inner product spaces			

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	1	3
CO2	3	2	3	2	3
CO3	3	2	2	1	3
CO4	3	3	2	1	3

		CO5	3	3	2	2	3
--	--	-----	---	---	---	---	---

Semester	V	Course Code	24MAUC3	3109	
Course Title	MATHEMATICAL ANALYSIS				
No. of. Credits	4	No. of. contact hours per		4	
New Course/		If revised, Percentage of			
Revised Course		(Minimum 20%)			
Category	Core Course (Major-9)				
Scope of the Course	Basic Skill				
Cognitive Levels addressed by the course	 Understanding metric spaces by remembering basic concepts of sets and functions (K-1 & K-2). Analysing properties of open, closed, connected and compact sets in metric spaces (K-4). Applying the property of compact sets to study uniformly continuous (K-3). Constructing everywhere discontinuous functions on the real line (K-6) Computing the definite integrals of functions (K-6) 				
Course Objective	The Course aims to impart concepts about sets with metric and related properties.				
Unit	Content No. of. Hou			No. of. Hours	
Ι	Limit of a function on the real line- Metric spaces- Limits in metric spaces- Functions continuous at a point on the real line - 14 Functions continuous on a metric space.			14	
II	Open sets- Closed sets- Discontinuous function on R- More about 12			12	
III	Connected sets- Bounded sets and totally bounded sets- Complete 14 metric spaces- Compact metric spaces.			14	
IV	Continuous functions on compact metric spaces- Continuity of the 11 11			11	
V	Definition of the Riemann integral- Existence of the Riemann integral- Properties of the Riemann integral- Derivatives- Rolle's theorem- The law of the mean- Fundamental theorem of calculus- Improper integrals.				
References	Text Book: 1. Richard R. Goldberg, Methods of Real Analysis, Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, 1970.				

	Unit 1: Section 4.1-4.3, 5.1-5.3.
	Unit 2: Section 5.4-5.6, 6.1.
	Unit 3: Section 6.2-6.5.
	Unit 4: Section 6.4-6.8.
	Unit 5: Section 7.2-7.9.
	Reference Books:
	 N. P. Bali, Real Analysis, An imprint of Laxmi Publications Pvt. Ltd., New Delhi, 2005.
	 Sterling K. Berberian, A First Course in Real Analysis, Springer, New York, 2004.
	3. S. Arumugam & A. Thangapandi Isaac, Modern Analysis , New Gamma Publishing House, Palayamkottai, 2002.
	4. Robert G. Bartle and Donald R. Sherbert, Introduction to Real Analysis , John Wiley & Sons, New Delhi, 1982.
	5. S. C. Malik & Savita Arora, Mathematical Analysis , New Age International LTD., New Delhi, 1992.
	E-Recourses:
	1. <u>https://nptel.ac.in/courses/111/106/111106142/</u>
	2. https://www.youtube.com/watch?v=md5UCR7mcIY&list=PLbMVogVj5nJS
	xFihV-ec4A3z FOGPRCo-
	On completion of the course students should be able to
	CO1: understand the geometrical view of metric spaces with different metrics.
	CO2: identify open, closed, connected and compact sets and its properties in
Course Outcomes	metric spaces.
	CO3: construct continuous and discontinuous functions on metric spaces.
	CO4: distinguish continuous and uniformly continuous functions
	CO5: evaluate integration of bounded functions.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	1	3	2	1
CO2	3	3	3	1	2
CO3	3	3	3	1	1
CO4	3	1	3	2	1
CO5	3	2	3	1	1

Semester	V	Course Code	24MAUC3	3110	
Course Title	LINEAR PROGRAMMIN	NG			
No. of. Credits	4	No. of. contact hours per week		4	
New Course/ Revised Course	Revised Course	If revised, Percentage of Revision effected (Minimum 20%)		30%	
Category	Core Course (Major-10)				
Scope of the Course	Basic Skill				
Cognitive Levels addressed by the course	 Knowing the basic concepts of mathematical formulation of LPP and solving the linear programming problems using graphical method, simplex method, Big M method and two-phase method. Understanding the concept of duality in Linear Programming, General Primal-Dual pair, formulating a dual problem and dual simplex method. Applying the North-West Corner rule and Vogel's approximation method to find an initial basic feasible solution. Evaluating the processing 'n' jobs through two machines, processing 'n' jobs through k machines and processing 2 jobs through k machines. Analyzing the two-person zero-sum games, the MAXIMIN-MINIMAX principle, graphical solution of 2 × n and m × 2 games and dominance 				
Course Objective	The Course aims to impart the basic concepts and applications of linear programming.				
Unit	Content No. of. Hou				
Ι	Solving Linear Progra Method –Insights into variables: Big M Method	mming Problems: Graphical the simplex method – Use o - Two Phase Method.	Solution f artificial	13	
II	Writing of Dual Linear Dual Pair –Formulating Method - Dual Simplex M	Programming Problem: Genera a Dual Problem - Duality an Aethod.	l Primal - d Simplex	13	
III	Transportation Problem for Finding Initial Basic MODI Method - Unbal Formulation of an Assign an AP – Hungarian Meth	(TP): General structure of TP - c Feasible Solution – Optimal anced Transportation Problems ment Problems (AP): Methods od –The Travelling Salesman Pr	- Methods ity Test - s. Modern of solving coblem.	13	
IV	Operations Scheduling Terminology and Assur Objective for Schedulin Processor Scheduling – H jobs through 'm' mach	: Problem of Sequencing mptions – Gantt Chart – Cr ng – Methods of Scheduling Flow shop scheduling – Processi ines – Personnel scheduling	 Basic iteria and Single ng of Two Rooting 	13	

	problems and sequencing – Problems of complex sequencing.
V	Decision Theory – Decision making under conflict (Competitive Game) – Two-Person Zero-Sum Games – Solution of Two Person Zero Sum Game – Arithmetic method for $n \times n$ game – Dominance Property.12
	 Text Book: 1. Kanti Swarup, P. K. Gupta & Man Mohan, Operations Research, Eighteenth Edition, Sultan Chand & Sons, New Delhi, 2015. Unit 1: Chapter 3: Sections 3.1 – 3.5 Unit 2: Chapter 5: Sections 5.1 - 5.3, 5.5, 5.8. Unit 3: Chapter 7: Sections 7.9, 7.10 - 2, 7.14, 7.15 Chapter 8: Sections 11.2, 11.3, 11.7. Chapter 9: Section 9.6 Unit 4: Chapter 10: Sections 10.1 - 10.11. Unit 5: Chapter 19: Sections 19.9 – 19.12.
References	 Reference Books: 1. P. K. Gupta & D. S. Hira, Operations Research, S. Chand & Company Ltd., New Delhi, 2013. 2. J. K. Sharma, Operations Research theory and its applications, 2nd Edition, Macmillan, New Delhi, 2006. 3. R. Panneerselvam, Operations Research, Prentice Hall of India Pvt. Ltd., New Delhi, 2002.
	E-Recourses: <u>https://nptel.ac.in/courses/112106134/</u> <u>https://nptel.ac.in/courses/111105039/</u> <u>https://nptel.ac.in/courses/110/106/110106062/</u>
Course Outcomes	 On completion of the course students should be able to CO1: formulate a linear programming problem and solve them graphically and simplex method. CO2: explain the concepts of duality programming. CO3: analyze the different aspects of transportation problems and also assignment problems. CO4: develop, organize, evaluate short, long-term processes, and solve problems. CO5: utilize the acquired knowledge of basics in game theory.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	1	1	2	3
CO2	3	2	3	1	3
CO3	3	2	2	3	1
CO4	3	2	3	2	1
CO5	3	2	1	3	2

Semester	V	Course Code	24MAUB3	115	
Course Title	ORDINARY DIFFERENTIAL EQUATIONS				
No. of. Credits	4	No. of. contact hours per week		4	
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)			
Category	Core Course (Minor-5)				
Scope of the Course	Basic Skill				
Cognitive Levels addressed by the course Course Objective	 Remembering the different types of differential equations (K-1) Understanding the initial/ Boundary value problems and existence of solutions (K-2) Applying various methods to solve first/second order differential equations (K-3) Analyse the conditions for the existence of solutions of differential equations (K-4) Construct solutions of differential equations by applying Laplace Transforms (K-3 & K-6) 				
	Laplace Transform.				
Unit		Content		No. of. Hours	
Ι	Differential Equations Differential Equations; T Initial-Value Problems- of Solutions.	and Their Solutions: Classif heir Origin and Application – Boundary-value Problems, and	fication of Solutions – l Existence	13	
Ш	First-Order Equations fo Exact Differential Equation Equations and Equation Equations and Bernoulli I	r which Exact Solutions Are (ions and Integrating Factors - ns Reducible to This Form Equations.	Obtainable: - Separable – Linear	14	

III	Explicit Methods of Solving Higher-Order Linear Differential Equations: Basic Theory of Linear Differential Equations – The Homogeneous Linear Equations with Constant Coefficients – The Method of Undetermined Coefficients.	12				
IV	Explicit Methods of Solving Higher-Order Linear Differential Equations (Continued): Variation of Parameters – The Cauchy- Euler Equation – Statements and Proofs of Theorem on the Second- Order Homogeneous Linear Equation.					
V	The Laplace Transform: Definition, Existence, and Basic Propertiesof the Laplace Transformation (Theorems without Proof) – TheInverse Transform and the Convolution (Theorems without Proof)12– Laplace Transform Solution of Linear Differential Equations withConstant Coefficients.					
References	 Text Book: Shepley L. Ross, Differential Equations, Third Edition, Wiley New Delhi, 2004. Unit 1: Chapter 1 Unit 2: Chapter 2: Section 2.1-2.3. Unit 3: Chapter 4: Section 4.1 – 4.3. Unit 4: Chapter 4: Section 9.1 – 9.3. Reference Books: William E. Boyce, Richard C. Diprima, Elementary Differential Boundary Value Problems, 9th Ed., Wiley India Pvt. Ltd., New Richard Bronson, Gabriel Costa, Schaum's Outline of Differentiat He dition (Schaum's Outlines), USA, 2014. Braun, M. Differential Equations and Their Applications, 4th USA, 2011. Kreyszig, E., Advanced Engineering Mathematics, 10th edition Sons, USA, 2010. M. D. Raisinghania, Advanced Differential Equations, S. Char New Delhi 2004. E-Recourses: https://onlinecourses.nptel.ac.in/noc21_ma09/course https://onlinecourses.nptel.ac.in/noc21_ma69/course https://nptel.ac.in/courses/122/107/122107037/ https://nptel.ac.in/courses/111/106/111106100/ https://nptel.ac.in/courses/111/108/111108081/ 	India Pvt. Ltd., I Equations and Delhi, 2017. ntial Equations , a Ed., Springer, a. John Wiley & and Publications,				
Course Outcomes	 On completion of the course students should be able to CO1: solve boundary/initial value problems. CO2: determine solutions of second order linear homogeneous, non-l differential equations with constant coefficients. CO3: determine solutions of Cauchy- Euler equation. CO4: determine the conditions for the existence of solutions of secon differential equations. 	nomogeneous d order				

CO5: estimate the solutions by applying Laplace transform methods.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	1	2
CO2	3	3	2	2	1
CO3	2	3	2	1	2
CO4	3	3	3	1	1
CO5	3	3	2	2	1

Semester	V	Course Code	24MAUC3111			
Course Title	INTERNSHIP					
Category	Core Course (Major -11)					

Semester	VI	Course Code	24MAUC3212		
Course Title	COMPLEX ANALYSIS				
No. of. Credits	4	No. of. contact hours per week	4		
New Course/ Revised Course	Revised	If revised, Percentage of Revision effected (Minimum 20%)	60%		
Category	Core Course (Major-12)				
Scope of the Course	Basic Skill				
Cognitive Levels addressed by the course	 Understanding analytic, harmonic, and conformal mapping (K-1). Understanding bilinear transformations –Cross Ratio-Fixed points of bilinear transformations (K-1). Applying Cauchy's Theorem and Cauchy's Integral formula to evaluate integral of complex functions (K-3). Identifying singular points of complex functions using Laurent's series and classifying the singular points (K-4). Evaluating indefinite integrals of complex functions using Residue Theorem (K-5) 				
Course Objective	The Course aims to introduce the concepts of complex numbers and analytic functions.				

Unit	Content	No. of. Hours	
Ι	Complex numbers – sums and products –moduli –complex conjugates – exponential forms – products and quotients in exponential form – roots of complex number – examples – regions in complex plane – analytic functions – functions of a complex variable – mappings – mappings by the exponential function – limits – theorems on limits – limits involving the point at infinity – continuity – derivatives – differentiation formulas – Cauchy- Riemann equations – sufficient condition for differentiability.	13	
II	Polar coordinates – analytic functions – examples – harmonic functions – mapping by elementary functions – linear transformation – the transformation w = $1/z$ – mapping by $1/z$ – linear fractional transformations – an implicit form – mappings of the upper half plane.	12	
III	Integrals – derivatives of function $w(t)$ – Definite Integrals of functions $w(t)$ – Contours – Contour Integrals – examples – upper bounds for moduli of contour integrals – Cauchy-Goursat Theorem (without proof) – simply and multiply connected domains (theorems without proof) – Cauchy integral formula – derivatives of analytic functions – Liouville's Theorem and the Fundamental Theorem of Algebra – maximum modulus principle.	13	
IV	Series – convergence of sequences and series (theorems without proof) – Taylor series – examples – Laurent series – examples – residues – Cauchy's Residue Theorem – using a single residue – the three types of isolated singular points.	15	
V	Residues at Poles – examples – zeros of analytic functions – zeros and poles – evaluation of improper integrals – example –improper integrals from fourier analysis – Jordan's lemma – definite integrals involving sines and cosines.	11	
References	Text Book:1. R. V. Churchill & J.W. Brown, Complex Variables and Applications, 7th Edition, McGraw Hill, Singapore, 1990. Unit 1: Chapter 1 (Sections 1, 4-10), Chapter 2 (Sections 11-21) Unit 2: Chapter 2 (Sections 22-25), Chapter 8 (Sections 83-88) Unit 3: Chapter 4 (Sections 36-41, 44, 46-50) Unit 4: Chapter 5 (Sections 51-56, 62-65) Unit 5: Chapter 6 (Sections 66-69), Chapter 7 (Sections 71-74, 78)		

 Reference Books: 1. L. Ahlfors, Complex Analysis, McGraw-Hill International Edition, 1979. 2. John B. Conway, Functions of One Complex Variable, Springer, ISE, 1973 3. S. Arumugam, A. Thangapandi Isaac & A. Somasundaram, Complex Analysis, SciTech Publications India, Pvt. Ltd., Chennai, 2002. 4. S. Narayanan & T.K. Manicavachagom Pillay, Complex Analysis, S. 	-
 L. Ahlfors, Complex Analysis, McGraw-Hill International Edition, 1979. John B. Conway, Functions of One Complex Variable, Springer, ISE, 1973 S. Arumugam, A. Thangapandi Isaac & A. Somasundaram, Complex Analysis, SciTech Publications India, Pvt. Ltd., Chennai, 2002. S. Narayanan & T.K. Manicavachagom Pillay, Complex Analysis, S. 	b .
 John B. Conway, Functions of One Complex Variable, Springer, ISE, 1973 S. Arumugam, A. Thangapandi Isaac & A. Somasundaram, Complex Analysis, SciTech Publications India, Pvt. Ltd., Chennai, 2002. S. Narayanan & T.K. Manicavachagom Pillay, Complex Analysis, S. 	
 S. Arumugam, A. Thangapandi Isaac & A. Somasundaram, Complex Analysis, SciTech Publications India, Pvt. Ltd., Chennai, 2002. S. Narayanan & T.K. Manicavachagom Pillay, Complex Analysis, S. 	
 Analysis, SciTech Publications India, Pvt. Ltd., Chennai, 2002. 4. S. Narayanan & T.K. Manicavachagom Pillay, Complex Analysis, S. 	
4. S. Narayanan & T.K. Manicavachagom Pillay, Complex Analysis, S.	
Viswanathan Publishers, Chennai, 1997.	
5. S. Ponnusamy, Foundations of Complex Analysis, 2ndEdition, Narosa	
Publication, New Delhi, 2005.	
E-Recourses:	
1. <u>https://nptel.ac.in/courses/111107056/s</u>	
2. <u>https://cosmolearning.org/courses/advanced-complex-analysis-i/</u>	
On completion of the course students should be able to	
CO1: outline the basic concepts of analytic function and its properties.	
CO2: explain about complex valued functions, conformal and bilinear	
Course Outcomes transformation.	
CO3: compare the integration of complex valued function with real valued	
function.	
CO4: predict the series of analytic function.	
CO5: apply the integration of complex function to find residues.	

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	1	1
CO2	3	3	3	1	1
CO3	3	2	3	2	1
CO4	3	3	3	1	1
CO5	3	3	3	1	1

Semester	VI	Course Code	24MAUC3213
Course Title	GRAPH THEORY		
No. of. Credits	4	No. of. contact hours per week	4
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)	

Category	Core Course (Major-13)				
Scope of the Course	• Basic Skill				
Cognitive Levels addressed by the course	 Knowing about graphs and subgraphs (K-1) Analysing about degree sequences and connectedness (K-3) Finding chromatic number and index for various graphs (K-2) 				
Course Objective	The Course aims to acquire knowledge of fundamentals of graphs an applications.	The Course aims to acquire knowledge of fundamentals of graphs and its applications.			
Unit	Content	No. of. Hours			
Ι	Graphs and Subgraphs: Introduction – Definition and examples –Degree – Subgraphs – Isomorphism –Ramsey Numbers– Independent sets and coverings –Intersection graphs and line graphs – Matrices – Operations on graphs.	14			
II	Degree Sequences: Introduction – Degree sequences –Graphic sequences - Connectedness: Introduction –Walks, trails, and paths– Connectedness and components – Blocks –Connectivity.				
III	Eulerian and Hamiltonian graphs: Introduction – Eulerian Graphs– Hamiltonian graphs – Trees: Introduction –Characterization of trees–Centre of a tree.13				
IV	Matchings: Introduction – Matchings – Matchings in bipartite graphs – Planarity: Introduction - Definition and properties.	12			
V	Colourability: Introduction – Chromatic number and chromaticindex – Directed graphs: Introduction – Definitions and basic13properties – paths and connections.				
References	 Text Book: S. Arumugam & S. Ramachandran, Invitation to Graph Theory, SciTech Publications (India) Pvt. Ltd., Chennai, 2001. Unit 1: Chapter 2: Sections 2.0 – 2.9 Unit 2: Chapter 3: Sections 3.0 – 3.2 & Chapter 4: Section 4.0 – 4.4 Unit 3: Chapter 5: Sections 5.0 – 5. 2 & Chapter 6: Section 6.0 – 6.2 Unit 4: Chapter 7: Sections 7.0 – 7.2 & Chapter 8: Section 8.0, 8.1 Unit 5: Chapter 9: Sections 9.0, 9.1 & Chapter 10: Section 10.0 – 10.3 Reference Books: J.A. Bondy & U.S.R. Murty, Graph Theory with Applications, Elsevier, New York, 1976. S.A. Choudam, A First course in Graph Theory, Macmillian India Ltd., New Delbi 2007 				

	3. J. Clark & D.A. Holton, A First Look at Graph Theory, Allied Publishers,		
	New Delhi, 1995.		
	E-Recourses:		
	1. <u>https://nptel.ac.in/courses/111/106/111106102/</u>		
	2. <u>https://nptel.ac.in/courses/111/106/111106050/</u>		
	On completion of the course students should be able to		
	CO1: explain the different models of a graph.		
Course Outcomes	CO2: outline various parameters of graphs.		
Course Outcomes	CO3: analyze various properties of graphs.		
	CO4: apply graph theoretic methods to solve different real-life problems.		
	CO5: demonstrate various graph structures in network models.		

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	2	3
CO2	2	3	3	3	1
CO3	3	2	2	2	1
CO4	1	1	2	3	3
CO5	3	2	1	2	3

Semester	VI	Course Code	24MAUC3214	
Course Title	MECHANICS			
No. of. Credits	4	No. of. contact hours per week	4	
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		
Category	Core Course (Major-14)			
Scope of the Course	Basic Skill			
Cognitive Levels addressed by the course	 Knowing about forces, velocity, acceleration, moments, couples, friction etc., in trigonometrically and geometrically (K-1). Understanding Newton's laws of motion and equilibrium of forces acting on a rigid body (K-2). Applying geometrical concepts in parallel forces, moments, and couples in physics problems (K-3). Analyses for Newton's laws of motion and projectiles (K-4). Create new problems in motion under action of central forces (K-6). 			

Course Objective	The Course aims to learn the application of geometric and trigonometric properti				
,	in equilibrium and motion of particles.				
Unit	Content	No. of. Hours			
Ι	Forces acting at a point: Basic concepts and principles – Parallelogram of forces - Triangle of forces - Lami's theorem and applications – Resolution of a force - Condition of equilibrium. Parallel forces and moments: Like and unlike parallel forces - Moment of a force - Related problems.	14			
II	Equilibrium of three forces acting on a rigid body: Three coplanar forces – Two trigonometrical theorems – Related problems. Friction: Definitions - Laws of friction - Angle of friction - Cone of friction - Properties and related problems.	12			
III	Kinematics: Motion in a straight line under uniform acceleration - Newton's laws of motion. Projectiles: Definitions - Path of a projectile - Properties and related problems.	14			
IV	Impulse and Impact: Collision of elastic bodies – Direct and oblique impact – Loss of kinetic energy – Related properties and problems.	12			
V	Central orbits: Motion under the action of central forces - Differentiation of a vector – Velocity and acceleration in polar coordinates - Properties and related problems - Differential equation of central orbit - Pedal equation of central orbit - Velocities in a central orbit - Law of forces - Properties and related problems.	12			
References	 1. M. K. Venkataraman, Statics, Agasthiar Publications, Trichy, 2016. Unit 1: Chapters 2, 3. Unit 2: Chapters 5, 7. 2. M. K. Venkataraman, Dynamics, Agasthiar Publications, Trichy, 2018. Unit 3: Chapter 3: Section 3.22, Chapter 4: Section 4.3, Chapter 6: Sections 6.1 - 6.11. Unit 4: Chapter 8. Unit 5: Chapter 11. Reference Books: T. K. Manicavachagom Pillay, Statics, S. Viswanathan & Co., Chennai, 1980. S. Narayanan, Dynamics, S. Chand & Co., New Delhi, 1980. A. V. Dharmapadam, Statics, Ananda Book Depot, Chennai, 2019. 				
Course Outcomes	On completion of the course students should be able to CO1: apply geometrical concepts in parallel forces, moments, and couples. CO2: evaluate static equilibrium of three forces acting on a rigid body and friction. CO3: explain Newton's laws of motion and projectiles. CO4: analyze the effects of collision of elastic bodies.				

CO5: predict the motion under action of central forces.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	1	2	2	3	3
CO2	2	2	3	2	2
CO3	3	2	1	2	3
CO4	3	2	2	1	3
CO5	1	3	1	2	2

Semester	VI	Course Code	24MAUCE	3215
Course Title	NUMERICAL METHODS			
No. of. Credits	4	No. of. contact hours per week		4
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)		
Category	Core Course (Major-15)			
Scope of the Course	Basic Skill			
Cognitive Levels addressed by the course	 Applying various methods to solve algebraic and transcendental equations (K-3). Understanding the concepts of interpolations (K-2). Knowing the various techniques for numerical differentiation (K-1) Finding the numerical solutions of system of linear equations (K-2) Applying the various methods to find approximate solutions of differential equations (K-3). 			
Course Objective	The Course aims to develop efficient algorithms for solving problems in Science, Engineering and Technology.			
Unit		Content		No. of. Hours
Ι	Errors in Numerical Calo A general error formu Solution of Algebraic and method – The Method Newton - Raphson meth	culations: Errors and their comp lla - Error in a series Appro d Transcendental equations: The of False position - Iteration od.	outations - oximation. Bisection method -	12
II	Interpolation: Finite diffe Differences - Central	erences - Forward Differences – Differences - Symbolic Relat	Backward tions and	13

	Separation of Symbols. Newton's Formulae for Interpolation -			
	Gauss's central difference formulae - Stirling's formula -			
	Interpolation with unevenly spaced points: Lagrange's			
	interpolation formula - Lagrange's Inverse Interpolation.			
	Numerical Differentiation: Derivatives using Newton's Forward			
	Difference Formula – Derivatives using Newton's Backward			
	Difference Formula - Derivatives using Stirling's Formula -			
III	Maxima and Minima of Tabulated Function Numerical	13		
	Integration: - Transzoidal Rule - Simpson's 1/3 Rule - Simpson's			
	3/8 Rule - Romberg Integration			
	Numerical Solutions of System of Linear Equations: Cause			
	Administration method Course Jordon method Medification of the			
IV	Course Mathed to compute the Incourse. Is selive mathed.	13		
	Gauss Method to compute the Inverse - Jacobi s method - Gauss -			
	Seldel method.			
	Numerical Solutions of Ordinary Differential Equations: Solution			
V	by Taylor's series - Picard's method of successive approximations –	13		
	Euler's Method – Modified Euler's Method – Runge - Kutta			
	Methods - Milne's Predictor -Corrector Method.			
	Text Book:			
	1. S. S. Sastry, Introductory Methods of Numerical Analysis, Fifth Edition,			
	PHI Learning Pvt. Ltd., New Delhi, 2015.			
	Unit 1: Chapter 1: Section 1.3 to 1.5, Chapter 2: Section 2.1 to 2.5			
	Unit 2: Chapter 3: Section 3.3.1 to 3.3.4, 3.6, 3.7.1, 3.7.2, 3.9.1			
	Unit 3: Chapter 6: Section 6.2, 6.3, 6.4.1, 6.4.2, 6.4.3, 6.4.6			
	Unit 4: Chapter 7: Section 7.5.1, 7.5.3, 7.5.4, 7.6.			
References	Unit 5: Chapter 8: Section 8.2, 8.3, 8.4, 8.4.2, 8.5, 8.6.2			
	Reference Books:			
	1. Gerald & Wheatly, Applied Numerical Analysis, Sixth Editio	n, Pearson		
	Education Pvt. Ltd., New Delhi, 2002.			
	2. S. Arumugam, A. Thangapandi Isaac & A. Somasundaram, Numerical			
	Methods, SciTech Publications Pvt. Ltd., Chennai, 2001.			
	3. V. N. Vedamurthy & N. Ch. S. N. Iyengar, Numerical Methods , Vikas			
	F Decompose			
	L-Recourses:			
	1. <u>https://hptel.ac.in/courses/111/10//11110/105/</u>			
	Contraction of the course students should be able to			
Course Outcomes	CO1: solve the interpolation problems.			
	CO2: identify the basic concept of numerical differentiation and integration,			
	principle of least squares.			

CO3: analyze the different aspects of numerical solution of algebraic and
Transcendental equations.
CO4: evaluate the solutions of simultaneous linear equations.
CO5: discuss the role and application of numerical solution of ordinary differential
equations.

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	2	1	3	3	2
CO2	3	2	1	2	1
CO3	2	1	3	2	3
CO4	3	2	1	3	2
CO5	2	3	2	2	1

Semester	VI	Course Code	24MAUB3216	
Course Title	TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS			
No. of. Credits	4	No. of. contact hours per week	4	
New Course/ Revised Course	New Course	If revised, Percentage of Revision effected (Minimum 20%)		
Category	Core Course (Minor - 6)			
Scope of the Course	Basic Skill			
Cognitive Levels addressed by the course	 Remembering the classification of partial differential equations (PDEs) and basic concepts of Fourier series and transforms (K-1) Understanding the general solutions of PDEs and convergence of Fourier series (K-2) Applying various methods to solve linear and nonlinear PDEs (K-3) Analyse Fourier series and Fourier transforms for various functions (K-4) 			
	• Construct solutions of PDEs by applying Lagrange's intear equation and the method of separation of variables (K-3 & K-6)			

Course Objective	The Course aims to introduce the fundamental concepts of partial differential			
	equations (PDEs), Fourier series and transforms.			
Unit	Content	No. of. Hours		
Ι	Introduction to Partial Differential Equations: Formation of Partial Differential Equations – Elimination of Arbitrary Constants – Elimination of Arbitrary Functions – Solutions of Partial Differential Equations – Procedure to Find General Solution – Procedure to Find Singular Solution – Complete Solutions of First Order Non-linear P.D.E.S – Equations Reducible to Standard Types– Transformation.	13		
II	General Solutions of Partial Differential Equations: Lagrange's Linear Equation – Solution of the Simultaneous Equations $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$. Linear P.D.E.S. of Higher Order with Constant Coefficients - Complementary Function for a Non-Homogeneous Linear Equation – Solution of P.D.E.S. by the Method of Separation of Variables.	14		
III	Introduction to Fourier Series: Dirichlet's Conditions – Euler's Formulas – Definition of Fourier Series and Some Important Concepts – Fourier Series for Even and Odd Functions and the Corresponding Theorems – Convergence of Fourier Series at Specific Points.	12		
IV	Half-Range Fourier Series: Related Theorems – Root-Mean Square Value of a Function – Parseval's Theorem – Harmonic Analysis – Complex Form of Fourier Series.	13		
V	Introduction to Fourier Transforms: Fourier Integral Theorem – Fourier Transforms – Alternative Form of Fourier Complex Integral Formula – Relationship between Fourier Transform and Laplace Transform – Properties of Fourier Transforms.	12		
References	 Text Book: 1. T Veerarajan, Transforms and Partial Differential Equation McGraw Hill India Pvt. Ltd., Chennai, 2016. Unit 1: Chapter 1: Sections 1.1-1.9. Unit 2: Chapter 1: Sections 1.10-1.15 Unit 3: Chapter 2: Sections 2.1 – 2.8. Unit 4: Chapter 2: Sections 2.9 – 2.12. Unit 5: Chapter 4: Sections 4.1 – 4.6. 	ns , Third Edition,		

	Reference Books:				
	 I. N. Snedden, Elements of Partial Differential Equations, Dover, 2006. M. D. Raisinghania, Ordinary and Partial Differential Equations, S. Chand & Company Pvt. Ltd., New Delhi 2016. V. Sundarapandian, Ordinary and Partial Differential Equations: With Laplace Transforms, Fourier Series and Applications, McGraw Hill Education Pvt. Ltd., Chennai 2013. Spiegel, Murray R, Fourier Analysis with Applications to Boundary Value Problems, McGraw Hill Education Pvt. Ltd., Chennai 2004. 				
	E-Recourses:				
	1. <u>https://nptel.ac.in/courses/111106046</u>				
	 <u>https://nptel.ac.in/courses/111108144</u> <u>https://nptel.ac.in/courses/111108152</u> 				
	On completion of the course, students should be able to				
Course Outcomes	CO1: formulate PDEs by eliminating arbitrary constants and functions. CO2: determine solutions for both linear and nonlinear PDEs. CO3: find the Fourier series expansion for various functions. CO4: determine the half-range cosine and sine series for specific functions. CO5: compute the Fourier transform and inverse Fourier transform for given functions.				

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	3	2	2	3
CO2	3	3	3	2	3
CO3	1	1	3	2	3
CO4	2	3	2	3	2
CO5	3	2	1	3	3

Semester	VI	Course Code	24MAUC3216	
Course Title	OPERATIONS RESEARCH			
No. of. Credits	4	No. of. contact hours per	4	
	-	week	-	
New Course/	Powieod Course	If revised, Percentage of	50%	
Revised Course	itevised Gouise	Revision effected	5070	

	(Mi	inimum 20%)		
Category	Core Course (Major-16)			
Scope of the Course	Basic Skill			
Cognitive Levels addressed by the course	 Knowing the basic concepts of decision analysis, decision-making process, decision-making environment, decision under uncertainty and decision under risk (K-1). Understanding the queuing theory, operating characteristics of a queuing system, probability distributions in queuing systems and classification of queuing models (K-2). Applying the Economic Order Quantity (EOQ) to solve the inventory problems (K-3). Evaluating the problems of replacement of equipment/asset that deteriorates gradually, replacement of equipment that fails suddenly (K-5). Analyzing the critical path analysis and probability considerations in PERT (K-4). 			
Course Objective	The Course aims to impart mathe techniques.	ematical modelling skills th	rough oper	ations research
Unit	Co	ontent		No. of. Hours
Ι	Scheduling Techniques: Advantages and limitations in network- Basic Components of network – Logical Sequencing – Rules of Network Construction – Critical Path Analysis – Program evaluation and review technique.			13
II	Decision Theory: Introduction – I Making Process – Decision Makin under Uncertainty – Decision Mak	Decision Making Problem - ng under certainty – Decisio king under Risk.	- Decision on Making	13
III	Queuing Theory: Queuing System – Operating Characteristics of a Queuing System – Probability Distributions in Queuing System – Transient state and Steady States of the system- Classification of Queuing Models — Poisson Queuing system (Model I, II, and III only).13			
IV	Replacement Decisions: Replace deteriorates Gradually – Replacem down/ fails Suddenly.	ement policy for equipm nent policy for equipment tl	nent that hat breaks	12
V	Inventory Management - Determit for Carrying Inventories - The in with Inventories – Factors Affecti of Economic Order Quantity (EOO – EOQ model with planned Shorta	nistic: Types of Inventories nventory decisions – Cost A ing Inventory Control – The Q) – EOQ model with reple ages.	– Reasons Associated e Concept enishment	13

	Text Book:			
	 Kanti Swarup, P. K. Gupta & Man Mohan, Operations Research, Eighteenth Thoroughly Revised Edition, Sultan Chand & Sons, New Delhi, 2015. Unit 1: Chapter 13: Sections 13.1 – 13.4, 13.6 - 13.13. Unit 2: Chapter 19: Sections 19.1, 19.3 – 19.6 Unit 3: Chapter 20: Sections 20.1, 20.3, 20.6, 20.8 – 20.10 (First Three Models only). Unit 4: Chapter 21: Sections 21. 5 and 21.6. Unit 5: Chapter 22: Sections 22.1-22.3, 22.5,22.6,22.8, 22.12, 22.13 			
References	Poference Pooles			
	1. P. K. Gupta & D. S. Hira, Operations Research , S. Chand and Company Ltd.,			
	New Delhi, 2013.			
	2. J. K. Sharma, Operations Research theory and Its Applications, 2ndEdition,			
	Macmillan India Limited, 2003.			
	E-Recourses:			
	1. <u>https://nptel.ac.in/courses/112106134/</u>			
	2. https://nptel.ac.in/courses/111105039/			
	On completion of the course students should be able to.			
	CO1: critique the role and application of PERT/CPM for project scheduling			
	CO2: demonstrate knowledge of the major concepts of decision theory and decision-			
Course Outcomes	making process.			
	CO3: identify the basic analysis of queuing systems.			
	CO4: identify the system reliability and specific types of replacement theory			
	CO5: apply the basic various inventory models in real life problems.			

PO CO	PO1	PO2	PO3	PO4	PO5
CO1	2	1	2	3	2
CO2	3	2	2	2	0
CO3	2	2	2	1	3
CO4	3	2	2	3	1
CO5	2	3	2	2	1

Semester	VII	Course Code	24MAUC4117
Course Title	ADVANCED ALGEBRA		
No. of Credits	4	No. of contact hours per week	4

New Course/ Revised Course	New Course	If revised, Percentage of Revision effected (Minimum 20%)			
Category	Core Course (Major-17)				
Scope of the Course	Advanced Skill				
Cognitive Levels addressed by the course	 Recognizing some advances of theory of groups (K1 Remember) Understanding automorphism group of a group, class equation of a group and the structure of finite abelian groups (K2-Understanding) Applying Sylow's Theorem to study the properties of groups. Using class equation to find the conjugacy classes in symmetric groups (K3-Applying) Examining the irreducibility of a polynomial (K4-Analyse) Investigating the structure of two isomorphic algebraic structures like groups, rings, fields (K5-Evaluate) Formulating some special types of rings_ideals (K6-Create) 				
Course Objective	The course aims to provide deep k	knowledge about groups and ring	ŞS.		
Unit		Content		No. of. Hours	
Ι	A counting principle - Norn Homomorphisms – Cauchy's theo for abelian groups - Corresp isomorphism theorem	nal subgroups and quotient orem for abelian groups - Sylow ³ ondence theorem for groups	groups – 's theorem s – First	14	
II	Automorphisms – Inner automo groups - Cayley's theorem – Appl	rphisms - Automorphism group ications - Permutation groups	o of cyclic	12	
III	Another counting principle: Con Applications - Cauchy's theorem groups - Finite abelian groups.	jugate class - Class equation of n - Sylow's theorems - Direct j	a group – product of	13	
IV	Ideals and quotient rings – More Euclidean rings - G.C.D - Uniq Euclidean ring - Fermat's theoren	ideals and quotient rings: Maxim ue Factorization Theorem - A 1	nal ideals - particular	12	
V	Polynomial rings - Division Algor Gauss' Lemma - Eisenstein Criter rings – Unique Factorization Dom	rithm- Polynomials over the rati rion - Polynomial rings over com nain.	onal field- nmutative	13	
References	Text Book:I. N. Herstein, Topics in AlgebraUnit 1: Chapter 2: SectUnit 2: Chapter 2: SectUnit 3: Chapter 2: SectUnit 4: Chapter 3: SectUnit 5: Chapter 3: SectReference Books:1. John. B. Fraleigh, A First	, 2 nd edition, John Wiley & Sons, tions 2.5, 2.6, 2.7 tions 2.8, 2.9, 2.10 tions 2.11, 2.12, 2.13, 2.14 tions 3.4, 3.5, 3.7, 3.8, tions 3.9, 3.10, 3.11	Singapore,	2006. .ddison-Wesley,	

	New Delhi, 2003.						
	2. P. B. Bhattacharya, S. K. Jain & S. R. Nagpaul, Basic Abstract Algebra, Cambridge						
	University Press, USA, 1986.						
	3. Charles Lanski, Concepts in Abstract Algebra, AMS, USA, 2010.						
	4. M. Artin, Algebra, Prentice-Hall of India, New Delhi, 1991.						
	5. D. S. Dummit & R. M. Foote, Abstract Algebra, John Wiley, New York, 1999.						
	E-Recourses:						
	1. https://onlinecourses.nptel.ac.in/noc18_ma15						
	2. https://onlinecourses.nptel.ac.in/noc18_ma16						
	On completion of the course students should be able to						
	CO1: explain advances of the theory of groups.						
Course	CO2: use Sylow's theorems in the study of finite groups.						
Outcomes	CO3: classify finite abelian groups using direct products						
	CO4: formulate some special types of rings and their properties.						
	CO5: check the irreducibility of polynomials.						

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	2	1	3
CO2	3	1	2	1	3
CO3	3	2	1	1	2
CO4	3	3	1	1	3
CO5	3	3	2	1	3

Semester	VII	Course Code	24MAUC4118			
Course Title	REAL ANALYSIS					
No. of. Credits	4	No. of. contact hours per week	4			
New Course/		If revised, Percentage of				
Revised	New Course	Revision effected				
Course		(Minimum 20%)				
Category	Core Course (Major-18)					
Scope of the						
Course						
	• Understanding the geometry of metric spaces and identifying open, closed, connected					
Cognitive	and compact sets in metric spaces (K-2)					
Levels	• Evaluating the limit of a sequence/series by analysing the convergence of the					
addressed by	sequence/series (K-4)					
the course	• Applying open & closed set to study continuous and discontinuous functions (K-3)					
	• Identifying differentiable functions and evaluate its derivatives (K-5)					

Course Objective	The course aims to impart the advanced concepts in real analysis.	
Unit	Content	No. of. Hours
I	Basic Topology: Finite - Countable and Uncountable sets - Metric spaces - Compact sets - Perfect sets - Connected sets.	13
II	Numerical Sequences and Series: Convergent sequences – Subsequences - Cauchy sequences - Upper and lower limits - Some special sequences	13
III	Series - The number e - The root and ratio tests – Power series - Summation by parts - Absolute convergence - Addition and multiplication of series - Rearrangements.	14
IV	Continuity: Limits of functions - Continuous functions - Continuity and compactness - Continuity and connectedness - Monotonic functions - Infinite limits and limits at infinity.	11
V	Differentiation: The derivative of a real function - Mean value theorems - The continuity of derivatives - L'Hospital's rule - Derivatives of Higher order - Taylor's theorem - Differentiation of vector valued functions.	13
References	 Text Book: Walter Rudin, Principles of Mathematical Analysis, 3rd Edition, International Book Company, Singapore, 1982. Unit 1: Chapter-2 Unit 2: Chpater-3 Unit 3: Chpater-3 (Sections 1-5) Unit 4: Chpater-4 (Sections 6-14) Unit 5: Chpater-5 Reference Books: Tom M. Apostol, Mathematical Analysis, Narosa Publishing House, New G. F. Simmons, Introduction to Topology and Modern Analysis, McC Delhi, 2004. R. G. Bartle & D.R. Sherbert, Introduction to Real Analysis, John Wil York, 1982. Kenneth A. Ross, Elementary Analysis: The theory of Calculus, Sprin 2004. N. L. Carothers, Real Analysis, Cambridge University Press, UK, 2000. S. C. Malik, Mathematical Analysis, Willey Eastern Ltd., New Delhi, 198 E-Recourses: http://nptel.ac.in/courses/109104124/ http://nptel.ac.in/courses/111101100/ 	McGraw – Hill Delhi, 1997. Graw- Hill, New ley & Sons, New ger, New York, 35.
Course Outcomes	On completion of the course students should be able to CO1: Discuss various axioms and properties of real and complex numbers. CO2: Identify the topological properties of sets in metric spaces. CO3: Compute the limits of convergent sequences/series. CO4: Identify the topological properties of functions defined on metric spaces CO5: Evaluate the derivative of real valued functions.	

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	3	2	1
CO2	3	2	3	1	2
CO3	3	3	2	2	2
CO4	3	3	2	1	2
CO5	3	3	2	1	2

Semester	VII	Course Code	24MAUC41	.19		
Course Title	Advanced Ordinary Differential E	Advanced Ordinary Differential Equations				
No. of. Credits	4	No. of. contact hours per week		4		
New Course/ Revised Course	New Course	If revised, Percentage of Revision effected (Minimum 20%)				
Category	Core Course (Major-19)					
Scope of the Course	Advanced Skill					
Cognitive Levels addressed by the course	 Identify various basic concep Use to model differential syst To develop approximation differential equations (K-3) Extend the results to higher content of the system of the sys	ts on differentiation (K-1) ems (K-2) methods and fixed point theo order differential calculus (K-4)	prems to get	solutions of		
Course Objective	The Course aims to study in-de equations.	epth concepts and applications	of ordina	ry differential		
Unit		Content		No. of. Hours		
Ι	Existence and Uniqueness of approximations - Picard's theorem conditions – Existence of Solution for Systems - Fixed point method.	Solutions: Introduction - n - Continuation and dependen ns in the large – Existence and	Successive ce of initial Uniqueness	13		
II	Differential Equations of Higher C – Linear Dependence and Wrons Homogeneous Linear Equations v Variable coefficients – Method of	order: Introduction – Higher ord skian – Basic Theory for linear vith Constant Coefficients – Eq Variation of Parameters .	ler Equations Equations – Juations with	12		
III	Systems of linear differential equ equations - Existence and unique homogeneous linear systems - I Linear systems with periodic coeff	ations: Introduction - Systems ness theorem - Fundamental ma inear systems with constant c icients – Variation of Parameter	of first order atrix – Non - coefficients - s.	13		

IV	Solution in Power Series: Introduction – Second – order Linear Equations with Ordinary Points – Legendre Equations and Legendre Polynomials – Second – Order Equations with Regular Singular Points – Bessel's Functions.	13			
V	Boundary value problem: Introduction - Strum Liouville problem - Green's function - Applications of boundary value problems - Picard's theorem.				
References	 Text Book: S. G. Deo, V. Raghavendra, Rasmita Kar & V. Lakshmikantham, Text bo Differential Equations, Third Edition, McGraw-Hill Education (India) 1 Delhi, 2016 Unit 1: Chapter 2: Sections 2.1 to 2.9 Unit 2: Chapter 4: Sections 4.1 to 4.2, 4.4 to 4.8 Unit 3: Chapter 5: Sections 5.1 to 5.9 Unit 4: Chapter 6: Sections 6.1 to 6.5 Unit 5: Chapter 8: Sections 8.1 to 8.5 Reference Books: M.E. Taylor, Introduction to Differential Equations, AMS Indian Edition, Pvt. Ltd., New Delhi, 2013. G. F. Simmons, S. G. Krantz, Differential Equations: Theory, Technique an Tata McGraw Hill Book Company, New Delhi, India, 2007. M. Barun, Differential Equations and Their Applications, 4th Edition, Sprin E-Recourses: https://onlinecourses.nptel.ac.in/noc18_ma10 https://nptel.ac.in/courses/111/107/111107111/ 	ok of Ordinary Pvt. Ltd., New 2011. PHI Learning d Practice, ger,1993.			
Course Outcomes	On completion of the course students should be able to CO1: analyze the existence and uniqueness of solutions of Differential Equation CO2: solve higher order ODE using various techniques. CO3: analyze the existence and uniqueness of solutions of system of Differentia CO4: solve differential equations using power series method. CO5: solve boundary value problems.	ıs. 1 Equations.			

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	2	2	2	2	3
CO2	2	3	2	2	2
CO3	1	2	1	2	3
CO4	1	2	2	1	3
CO5	1	2	2	2	2

Semester	VII	Course Code	24MAUB4	4117	
Course Title	NUMERICAL ANALYSIS				
No. of. Credits	4	No. of. contact hours per week		4	
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)			
Category	Core Course (Minor-7)				
Scope of the Course	Advanced Skill				
Cognitive Levels addressed by the course	 Knowing various numerical methods to solve transcendental and polynomial equations (K1) Understanding interpolation and curve fitting (K2) Applying algorithms numerically (K3) Applying numerical methods to evaluate differentiation and integration (K5) 				
Course Objective	efficient manner using differen	t numerical techniques.			
Unit	Content No. of. Hours			No. of. Hours	
Ι	Transcendental and polynomial equations: Rate of convergence SecantMethod-Regula Falsi Method-Netwon Raphson Method- Muller Methodand Chebyshev Method. Polynomial equations: Descartes' Rule of Signs-Iterative Methods: Birge-Vieta method, Bairstow's method DirectMethod: Graeffe's root squaring method				
II	Interpolation and curve fitting: Lagrangian polynomials - Divided differences - Interpolation with cubic spline – Least square 13 approximation of functions.				
III	Numerical differentiation and integration: Numerical differentiation derivatives using Newton's forward and backward formula -Derivatives using Stirling's formula - Trapezoidal rule - Simpson's 1/3rd rule - 3/8 rule -Weddles's rule - Errors in quadrature formula.13				
IV	Numerical solution of ordinary differential equations: The Taylor seriesmethod – Picard's method - Euler and modified Euler methods – Runge -13Kutta methods - Milne's method - The Adams - Moulton method.				
V	Numerical solution of ordinary differential equations: The Taylor series method – Picard's method - Euler and modified Euler methods – Runge - Kutta methods - Milne's method - The Adams - Moulton method.				
References	Text Books: 1. M.K. Jain, S.R.K. Iyen Engineering Computat Delhi, Sixth Edition 20 Unit 1: Ch	gar and R.K. Jain, Numerical I ion, New Age International (p <u>)</u> 12. napter 2: Sections 2.5,2.9	Methods fo) Limited F	r Scientific and Publishers, New	

	2. Curtis. F. Gerald, Patrick & O. Wheatley, Applied Numerical Analysis, 5th						
	Edition, Pearson Education, New Delhi, 2005						
	Unit 2: Chapter 3: Sections 3.1, 3.2, 3.3, 3.4, 3.7.						
	3. V. N. Vedamurthy & N. Ch. S. N. Iyengar, Numerical Methods, Vikas Publishing						
	House, Pvt. Ltd., Noida, 2000.						
	Unit 3: Chapter 9: Sections 9.1 to 9.4, 9.6 to 9.12.						
	Unit 4: Chapter 11: Sections 11.4 to 11.20.						
	Unit 5: Chapter 12: Sections 12.1 to 12.9.						
	Reference Books:						
	1. R. L. Burden & J. Douglas Faires, Numerical Analysis, Thompson Books, USA, 2005.						
	2. P. Kandasamy, K. Thilagavathy & K. Gunavathi, Numerical Methods, S. Chand &						
	company PVT. LTD.						
	E-Recourses:						
	1. http://nptel.ac.in/courses/111107105/						
	On completion of the course students should be able to						
	CO1: Apply different methods to solve the system of equations						
Common Orangement	CO2: Realize the nature of different curves along with specified properties						
Course Outcomes	CO3: Utilize various types of integrals to solve many complicated problems						
	CO4: Outline the methods to solve higher order differential equations						
	CO5: Discuss various types of partial differential equations.						

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	3	3	1	2
CO2	3	3	3	3	2
CO3	2	2	3	3	3
CO4	3	3	2	3	1
CO5	1	2	3	3	3

Semester	VII	Course Code	24MAUB4118
Course Title	DISCRETE MATHEMATICS		
No. of. Credits	4	No. of. contact hours per week	4
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)	
Category	Core Course (Minor-8)		

Scope of the Course	Advanced Skill	
Cognitive Levels addressed by the course Course Objective	 Knowing the concepts of basic principles to solve the counting problems (Understanding the permutation and combinatorial problem (K2) Applying Inclusion-exclusion principle to real life problems. (K3) Evaluating number theoretical problems by using number theoretic functi The Course aims to impart various concepts about permutations, combination numbers. 	K1) ons (K5) s and theory of
Unit	Content	No. of. Hours
I	Four basic counting principles - Permutations of sets -Combinations (subsets) of sets -Permutations of multi sets -Combinations of multi sets - Pigeonhole principle: simple form - strong form - Pascal's triangle - The binomial theorem - Unimodality of binomial coefficients - The multinomial theorem - Newton's binomial theorem.	14
II	The inclusion – exclusion principle – Combinations with repetition – Derangements – Permutations with forbidden positions – Some number sequences – Generating functions – Exponential generating functions – Solving linear homogeneous recurrence relations and non-homogeneous recurrence relations.	13
III	Divisibility theory in the integers: Early number theory -The division algorithm - The greatest common divisor - The Euclidean algorithm -The Diophantine equation. Primes and their distributions: The fundamental theorem of arithmetic -The sieve of Eratosthenes -The Goldbach conjecture.	13
IV	The theory of congruence: Basic properties of congruence - Linear congruence and the Chinese Reminder Theorem -Fermat's Theorem: Fermat's little theorem and pseudoprimes - Wilson's theorem - The Fermat- Kraitchik factorization method.	12
V	Number theoretic functions: The sum and number of divisors - The Mobius inversion formula. Euler's generalization of Fermat's theorem: Euler's Phi function-Euler's theorem - Some properties of Phi function. Primitive roots: The order of an integer modulo <i>n</i> - Primitive roots for primes - Composite numbers having primitive roots.	12
References	 Text Books: 1. Richard A. Brualdi, Introductory Combinatorics, 5th edition, Pearson England, 2010. Unit 1: Chapter 2: Sections 2.1 - 2.5. Chapter 3: Sections 3.1, 3.2. Ch 5.1 - 5.5. Unit 2: Chapter 6: Sections 6.1 - 6.4. Chapter 7: Sections 7.1 - 7.5. 2. David M. Burton, Elementary Number Theory, 6th Edition, Tata Mc Delhi, 2006. Unit 3: Chapter 2: Sections 2.1 - 2.5, Chapter 3: Sections 3.2 - 3.3. Unit 4: Chapter 4: Sections 4.2, 4.4, Chapter 5: Sections 5.2 - 5.4. Unit5: Chapter 6: Sections 6.1, 6.2, Chapter 7: Sections 7.2, 7.3, Chapter 8: Sections 8.1 - 8.3. 	1 Education Inc, 1apter 5: Sections Graw Hill, New

	Reference Books:					
	1. C. Berg, Principles of Combinatorics, Academic Press, New York, 1971.					
	2. S. Lipschutz & M. Lipson, Discrete Mathematics, Tata McGraw-Hill Publishing					
	Company, New Delhi, 2006.					
	3. J. Truss, Discrete Mathematics for Computer Scientists, Pearson Education Limited,					
	England, 1999.					
	4. Tom. M. Apostol, Introduction to Analytic Number Theory, Springer, New Delhi, 1993.					
	5. Thomas Koshy, Elementary Number Theory, Elsevier, California, 2005.					
	6. N. Robbins, Beginning Number Theory, 2nd Edition, Narosa Publishing House, New					
	Delhi, 2007.					
	E-Recourses:					
	1. https://www.tutorialspoint.com/discrete_mathematics/					
	2. <u>home.iitk.ac.in/~arlal/book/mth202.pdf</u>					
	On completion of the course students should be able to					
	CO1: Outline the ideas of permutations, combinations, and its properties					
Course	CO2: Apply the permutations and combinations to solve problems					
Outcomes	CO3: Predict the concepts of divisibility and related algorithms					
	CO4: Analyse the properties of congruence relations					
	CO5: Explain the number theoretic functions					

РО	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	2	2	2
CO2	3	1	2	1	2
CO3	2	2	1	2	2
CO4	2	2	1	2	2
CO5	2	2	1	2	2

Semester	VIII	Course Code	24MAUC4220		
Course Title	PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS				
No. of. Credits	4	No. of. contact hours per week	4		
New Course/		If revised, Percentage of			
Revised	New Course	Revision effected			
Course		(Minimum 20%)			
Category	Core Course (Major-20)				
Scope of the	Advanced Skill				
Course	Auvanceu Skiii				

Cognitive	• Identify various basic concepts on Partial Differential Equations (K1)			
Levels	• To study second order P.D.E and its Classifications (K2)			
addressed by	• To study the results to Laplace's Equation, Wave Equation & Heat Equation(K4)			
the course				
Course	The Course aims to study in-denth concepts and applications of partial different	ntial equations		
Objective	The Course and to study in depth concepts and applications of partial difference	intial equations.		
Unit	Content	No. of. Hours		
Ι	First Order P.D.E: Curves and Surfaces - Genesis of First Order P.D.E Classification of Integrals - Linear Equations of the First Order - Pfaffian Differential Equations - Compatible Systems - Charpit's Method - Jacobi's Method.	13		
II	Linear Integral Surfaces Through a Given Curve - Quasi-Linear Equations - Non-linear First Order P.D.E. Second Order P.D.E.: Genesis of Second Order P.D.E Classification of Second Order P.D.E.	12		
III	Wave Equation: One-Dimensional Wave Equation - Vibrations of an Infinite String - Vibrations of a Semi-infinite String - Vibrations of a String of Finite Length (Method of separation of variables).	13		
IV	Laplace's Equation: Boundary Value Problems - Maximum and Minimum Principles - The Cauchy Problem - The Dirichlet Problem for the Upper Half Plane - The Neumann Problem for the Upper Half Plane - The Dirichlet Interior Problem for a Circle - The Dirichlet Exterior Problem for a Circle - The Neumann Problem for a Circle - The Dirichlet Problem for a Rectangle - Harnack's Theorem .	13		
V	Heat Equation: Heat Conduction Problem - Heat Conduction - Infinite Rod Case - Heat Conduction Finite Rod Case - Duhamel's Principle - Wave Equation - Heat Conduction Equation.	13		
References	 Text Book: 1. T. Amarnath, An Elementary Course in Partial Differential Equations: Publishing Company, 2010. Unit 1: Chapter 1: Sections 1.1 to 1.8 Unit 2: Chapter 1, 2: Sections 1.9 to 1.11 & 2.1,2.2 Unit 3: Chapter 2: Sections 2.3.1 to 2.3.5 Unit 4: Chapter 2: Sections 2.4.1 to 2.4.10 Unit 5: Chapter 2: Sections 2.5 to 2.6 Reference Books: I. N. Snedden, Elements of Partial Differential Equations, Dover, 2006. A.K. Nandakumaran and P.S. Datti, Partial Differential Equations, Cover, 2009 E-Recourses: https://onlinecourses.nptel.ac.in/noc18_ma10 https://nptel.ac.in/courses/111/107/111107111/ 	, 2nd Ed, Narosa 6. Classical Theory		
Course Outcomes	On completion of the course students should be able to CO1: solve different types of first order partial differential equations.			

CO2: classify and solve second order partial differential equations.
CO3: solve wave equations using different techniques.
CO4: solve different forms of Laplace equations.
CO5: solve heat equations and apply in real life problems.

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	2	3	2	2
CO2	1	3	2	2	3
CO3	3	2	1	3	2
CO4	2	1	2	3	3
CO5	3	3	2	2	3

Semester	VIII	Course Code	24MAUC4221		
Course Title	MATHEMATICAL METHODS				
No. of. Credits	4	4			
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)			
Category	Core Course (Major-21)				
Scope of the Course	Advanced Skill				
Cognitive Levels addressed by the course	 Knowing different methods for solving integral equations (K1) Understanding the concepts of Fourier transformations (K2) Applying various techniques to evaluate extreme value problems (K5) 				
Course Objective	The Course aims to learn various techniques in integral equations and calculus of variations				
Unit	Content No. of. Hours				
Ι	Integral equations: Types of integral equations - conversion of ordinary differential equation into integral equation - Method of converting initial value problem into a Volterra integral equation - Boundary value problem - Method of converting a boundary value problem into a Fredholm integral equation – Solution of Homogeneous Fredholm integral equation of the second kind with separable kernels - Problems - Characteristic values and functions - Solutions of Fredholm integral equation of the second kind with separable kernels – Problems.				

II	Method of successive approximations : Introduction - Iterated kernels or functions - Resolvent (or reciprocal) kernel - Solution of Fredholm integral equation of the second kind by successive substitutions - Solution of Volterra integral equation of the second kind by successive approximations - Reciprocal functions Neumann series -Solutions of Volterra integral equation of the second kind when its kernel is of some particular form - Solution of Volterra equation of the second kind by reducing to differential equation.	13					
III	Singular integral equations - The solution of Abel's integral equation - Some general form of Abel's singular integral equation - Problem- Applications of integral equation and Green's functions to ordinary differential equation - Green's function- Conversion of a boundary value problem into Fredholm's integral equation - Some special cases - Examples based on construction of Green's functions and problems.						
IV	Fourier Transforms - Definition- Inversion theorem - Fourier sine and cosine transform - Fourier transforms of derivatives - Convolution theorem - Parsevel's relation for Fourier transform and problems on self-reciprocal.	13					
V	Functionals – Euler's equation – Solutions of Euler's equation – Geodesics – Isoperimetric problems – Several dependent variables – Functionals involving higher order derivatives.	12					
References	Functionals – Euler's equation – Solutions of Euler's equation – Geodesics – Isoperimetric problems – Several dependent variables – Functionals involving higher order derivatives. Text Books: 1. M. D. Raisinghania, Integral Equations and boundary value Problems, Third Revised Edition, S. Chand & Company Ltd. New Delhi, 2010. Unit 1: Chapter 2 Sections 2.1 to 2.6 and Chapter 3 Sections 3.1 to 3.3 Unit 2: Chapter 5 Sections 5.1 to 5.15 Unit 3: Chapter 8, Section 8.1 to 8.6, Chapter 11 Section 11.1 to 11.8 2. I. N. Sneddon, The use of Integral Transform, Tata McGraw Hill, New Delhi, 1974. Unit 4: 3. B.S. Grewal, Higher Engineering Mathematics, 39 th edition, Khanna publishers, New Delhi, 2016. Unit 5: Chapter 33.1-33.8 Reference Books: 1. J. K. Goyal & K. P. Gupta, Laplace and Fourier Transforms, 12th Edition, Pragati Prakashan Meerukt, 2000. 2. W. V. Lovitt, Linear Integral equations, Dover Publications, New York, 1950. 3. F.B. Hildebrand, "Methods of Applied Mathematics", Prentice-Hall of India Pvt., New Delhi, 1968. 4. A.S. Gupta, "Calculus of Variations with Application", Prentice-Hall of India, New Delhi, 2005. E-Recourses: 1. http://nptel.ac.in/courses/111107103/						

	On completion of the course students should be able to				
	CO1: Apply the various concepts of integral equations in various problems				
Course	CO2: Discuss the solutions of various integral equations				
Outcomes	CO3: Assess various theorems with proof techniques that will motivate to develop further				
	CO4: Create different functions based on applications				
	CO5: Apply different transformation techniques in solving problems.				

PO	PO1	PO2	PO3	PO4	PO5
CO					
CO1	3	3	2	2	3
CO2	3	3	3	2	3
CO3	1	1	3	2	3
CO4	2	3	2	3	2
CO5	3	2	1	3	3

Semester	VIII	Course Code	24MAUC4222
Course Title	PROJECT REPORT		
No. of. Credits	12	No. of. contact hours per week	12
New Course/ Revised Course		If revised, Percentage of Revision effected (Minimum 20%)	
Category	Core Course (Major-22)		